The Intestine Harbors Functionally Distinct Homeostatic Tissue-Resident and Inflammatory Th17 Cells.
T helper 17 (Th17) cells are pathogenic in many inflammatory diseases,but also support the integrity of the intestinal barrier in a non-inflammatory manner. It is unclear what distinguishes inflammatory Th17 cells elicited by pathogens and tissue-resident homeostatic Th17 cells elicited by commensals. Here,we compared the characteristics of Th17 cells differentiating in response to commensal bacteria (SFB) to those differentiating in response to a pathogen (Citrobacter rodentium). Homeostatic Th17 cells exhibited little plasticity towards expression of inflammatory cytokines,were characterized by a metabolism typical of quiescent or memory T cells,and did not participate in inflammatory processes. In contrast,infection-induced Th17 cells showed extensive plasticity towards pro-inflammatory cytokines,disseminated widely into the periphery,and engaged aerobic glycolysis in addition to oxidative phosphorylation typical for inflammatory effector cells. These findings will help ensure that future therapies directed against inflammatory Th17 cells do not inadvertently damage the resident gut population.
View Publication
Hirst CE et al. (JAN 2003)
Journal of immunology (Baltimore,Md. : 1950) 170 2 805--15
The intracellular granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency.
Granzyme B (grB) is a serine proteinase released by cytotoxic lymphocytes (CLs) to kill abnormal cells. GrB-mediated apoptotic pathways are conserved in nucleated cells; hence,CLs require mechanisms to protect against ectopic or misdirected grB. The nucleocytoplasmic serpin,proteinase inhibitor 9 (PI-9),is a potent inhibitor of grB that protects cells from grB-mediated apoptosis in model systems. Here we show that PI-9 is present in CD4(+) cells,CD8(+) T cells,NK cells,and at lower levels in B cells and myeloid cells. PI-9 is up-regulated in response to grB production and degranulation,and associates with grB-containing granules in activated CTLs and NK cells. Intracellular complexes of PI-9 and grB are evident in NK cells,and overexpression of PI-9 enhances CTL potency,suggesting that cytoplasmic grB,which may threaten CL viability,is rapidly inactivated by PI-9. Because dendritic cells (DCs) acquire characteristics similar to those of target cells to activate naive CD8(+) T cells and therefore may also require protection against grB,we investigated the expression of PI-9 in DCs. PI-9 is evident in thymic DCs (CD3(-),CD4(+),CD8(-),CD45(+)),tonsillar DCs,and DC subsets purified from peripheral blood (CD16(+) monocytes and CD123(+) plasmacytoid DCs). Furthermore,PI-9 is expressed in monocyte-derived DCs and is up-regulated upon TNF-alpha-induced maturation of monocyte-derived DCs. In conclusion,the presence and subcellular localization of PI-9 in leukocytes and DCs are consistent with a protective role against ectopic or misdirected grB during an immune response.
View Publication
Zizzari IG et al. ( 2015)
PLoS One 10 7 e0132617
The Macrophage Galactose-Type C-Type Lectin (MGL) Modulates Regulatory T Cell Functions
Regulatory T cells (Tregs) are physiologically designed to prevent autoimmune disease and maintain self-tolerance. In tumour microenvironments,their presence is related to a poor prognosis,and they influence the therapeutic outcome due to their capacity to suppress the immune response by cell-cell contact and to release immunosuppressive cytokines. In this study,we demonstrate that Treg immunosuppressive activity can be modulated by the cross-linking between the CD45RA expressed by Tregs and the C-type lectin MGL. This specific interaction strongly decreases the immunosuppressive activity of Tregs,restoring the proliferative capacity of co-cultured T lymphocytes. This effect can be attributed to changes in CD45RA and TCR signalling through the inhibition of Lck and inactivation of Zap-70,an increase in the Foxp3 methylation status and,ultimately,the reduced production of suppressive cytokines. These results indicate a role of MGL as an immunomodulator within the tumour microenvironment interfering with Treg functions,suggesting its possible use in the design of anticancer vaccines.
View Publication
Schü et al. (MAY 2008)
Blood 111 9 4532--41
The MADS transcription factor Mef2c is a pivotal modulator of myeloid cell fate.
Mef2c is a MADS (MCM1-agamous-deficient serum response factor) transcription factor best known for its role in muscle and cardiovascular development. A causal role of up-regulated MEF2C expression in myelomonocytic acute myeloid leukemia (AML) has recently been demonstrated. Due to the pronounced monocytic component observed in Mef2c-induced AML,this study was designed to assess the importance of Mef2c in normal myeloid differentiation. Analysis of bone marrow (BM) cells manipulated to constitutively express Mef2c demonstrated increased monopoiesis at the expense of granulopoiesis,whereas BM isolated from Mef2c(Delta/-) mice showed reduced levels of monocytic differentiation in response to cytokines. Mechanistic studies showed that loss of Mef2c expression correlated with reduced levels of transcripts encoding c-Jun,but not PU.1,C/EBPalpha,or JunB transcription factors. Inhibiting Jun expression by short-interfering RNA impaired Mef2c-mediated inhibition of granulocyte development. Moreover,retroviral expression of c-Jun in BM cells promoted monocytic differentiation. The ability of Mef2c to modulate cell-fate decisions between monocyte and granulocyte differentiation,coupled with its functional sensitivity to extracellular stimuli,demonstrate an important role in immunity--and,consistent with findings of other myeloid transcription factors,a target of oncogenic lesions in AML.
View Publication
Shreffler WG et al. (SEP 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 6 3677--85
The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro.
Nonmammalian glycan structures from helminths act as Th2 adjuvants. Some of these structures are also common on plant glycoproteins. We hypothesized that glycan structures present on peanut glycoallergens act as Th2 adjuvants. Peanut Ag (PNAg),but not deglycosylated PNAg,activated monocyte-derived dendritic cells (MDDCs) as measured by MHC/costimulatory molecule up-regulation,and by their ability to drive T cell proliferation. Furthermore,PNAg-activated MDDCs induced 2- to 3-fold more IL-4- and IL-13-secreting Th2 cells than immature or TNF/IL-1-activated MDDCs when cultured with naive CD4+ T cells. Human MDDCs rapidly internalized Ag in a calcium- and glycan-dependent manner consistent with recognition by C-type lectin. Dendritic cell (DC)-specific ICAM-grabbing nonintegrin (DC-SIGN) (CD209) was shown to recognize PNAg by enhanced uptake in transfected cell lines. To identify the DC-SIGN ligand from unfractionated PNAg,we expressed the extracellular portion of DC-SIGN as an Fc-fusion protein and used it to immunoprecipitate PNAg. A single glycoprotein was pulled down in a calcium-dependent manner,and its identity as Ara h 1 was proven by immunolabeling and mass spectrometry. Purified Ara h 1 was found to be sufficient for the induction of MDDCs that prime Th2-skewed T cell responses. Both PNAg and purified Ara h 1 induced Erk 1/2 phosphorylation of MDDCs,consistent with previous reports on the effect of Th2 adjuvants on DCs.
View Publication
Lucas DM et al. (MAY 2009)
Blood 113 19 4656--66
The novel plant-derived agent silvestrol has B-cell selective activity in chronic lymphocytic leukemia and acute lymphoblastic leukemia in vitro and in vivo.
Therapeutic options for advanced B-cell acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL) are limited. Available treatments can also deplete T lymphocytes,leaving patients at risk of life-threatening infections. In the National Cancer Institute cell line screen,the structurally unique natural product silvestrol produces an unusual pattern of cytotoxicity that suggests activity in leukemia and selectivity for B cells. We investigated silvestrol efficacy using primary human B-leukemia cells,established B-leukemia cell lines,and animal models. In CLL cells,silvestrol LC(50) (concentration lethal to 50%) is 6.9 nM at 72 hours. At this concentration,there is no difference in sensitivity of cells from patients with or without the del(17p13.1) abnormality. In isolated cells and whole blood,silvestrol is more cytotoxic toward B cells than T cells. Silvestrol causes early reduction in Mcl-1 expression due to translational inhibition with subsequent mitochondrial damage,as evidenced by reactive oxygen species generation and membrane depolarization. In vivo,silvestrol causes significant B-cell reduction in Emu-Tcl-1 transgenic mice and significantly extends survival of 697 xenograft severe combined immunodeficient (SCID) mice without discernible toxicity. These data indicate silvestrol has efficacy against B cells in vitro and in vivo and identify translational inhibition as a potential therapeutic target in B-cell leukemias.
View Publication
Pourcet B et al. (MAY 2016)
Scientific Reports 6 25481
The nuclear receptor LXR modulates interleukin-18 levels in macrophages through multiple mechanisms.
IL-18 is a member of the IL-1 family involved in innate immunity and inflammation. Deregulated levels of IL-18 are involved in the pathogenesis of multiple disorders including inflammatory and metabolic diseases,yet relatively little is known regarding its regulation. Liver X receptors or LXRs are key modulators of macrophage cholesterol homeostasis and immune responses. Here we show that LXR ligands negatively regulate LPS-induced mRNA and protein expression of IL-18 in bone marrow-derived macrophages. Consistent with this being an LXR-mediated process,inhibition is abolished in the presence of a specific LXR antagonist and in LXR-deficient macrophages. Additionally,IL-18 processing of its precursor inactive form to its bioactive state is inhibited by LXR through negative regulation of both pro-caspase 1 expression and activation. Finally,LXR ligands further modulate IL-18 levels by inducing the expression of IL-18BP,a potent endogenous inhibitor of IL-18. This regulation occurs via the transcription factor IRF8,thus identifying IL-18BP as a novel LXR and IRF8 target gene. In conclusion,LXR activation inhibits IL-18 production through regulation of its transcription and maturation into an active pro-inflammatory cytokine. This novel regulation of IL-18 by LXR could be applied to modulate the severity of IL-18 driven metabolic and inflammatory disorders.
View Publication
Armengol Lopez S et al. (JAN 2012)
International journal of vascular medicine 2012 942512
The oxidative state of chylomicron remnants influences their modulation of human monocyte activation.
Chylomicron remnants (CMRs) contribute directly to human monocyte activation in vitro,by increasing reactive oxygen species (ROS) production and cell migration. In this study,the effects of the oxidative state of CMR on the degree of monocyte activation was investigated. CMR-like particles (CRLPs) were prepared in three different oxidative states,normal (CRLPs),protected from oxidation by incorporation of the antioxidant,probucol (pCRLPs),or oxidised with CuSO(4) (oxCRLPs). Lipid accumulation and ROS production were significantly increased in primary human monocytes incubated with CRLPs,whilst secretion on monocyte chemoattractant protein-1 was reduced,but oxCRLPs had no additional effect. In contrast,pCRLPs were taken up by monocytes to a lesser extent and had no significant effect on ROS or MCP-1 secretion. These studies suggest that the oxidative state of CMRs modulates their stimulation of the activation of peripheral blood human monocytes and that dietary antioxidants may provide some protection against these atherogenic effects.
View Publication
Stadtmann A et al. (OCT 2013)
The Journal of Experimental Medicine 210 11 2171--80
The PSGL-1-L-selectin signaling complex regulates neutrophil adhesion under flow
Neutrophils are recruited from the blood to sites of inflammation,where they contribute to immune defense but may also cause tissue damage. During inflammation,neutrophils roll along the microvascular endothelium before arresting and transmigrating. Arrest requires conformational activation of the integrin lymphocyte function-associated antigen 1 (LFA-1),which can be induced by selectin engagement. Here,we demonstrate that a subset of P-selectin glycoprotein ligand-1 (PSGL-1) molecules is constitutively associated with L-selectin. Although this association does not require the known lectin-like interaction between L-selectin and PSGL-1,the signaling output is dependent on this interaction and the cytoplasmic tail of L-selectin. The PSGL-1-L-selectin complex signals through Src family kinases,ITAM domain-containing adaptor proteins,and other kinases to ultimately result in LFA-1 activation. The PSGL-1-L-selectin complex-induced signaling effects on neutrophil slow rolling and recruitment in vivo demonstrate the functional importance of this pathway. We conclude that this is a signaling complex specialized for sensing adhesion under flow.
View Publication
Moulton VR et al. (JUL 2008)
The Journal of biological chemistry 283 29 20037--44
The RNA-stabilizing protein HuR regulates the expression of zeta chain of the human T cell receptor-associated CD3 complex.
T cell dysfunction is crucial to the pathogenesis of systemic lupus erythematosus (SLE); however,the molecular mechanisms involved in the deficient expression of the T cell receptor-associated CD3zeta chain in SLE are not clear. SLE T cells express abnormally increased levels of an alternatively spliced isoform of CD3zeta that lacks a 562-bp region in its 3'-untranslated region (UTR). We showed previously that two adenosine/uridine-rich elements (ARE) in this splice-deleted region of CD3zeta transcript are critical for the mRNA stability and protein expression of CD3zeta. In this study we show for the first time that the mRNA-stabilizing protein HuR binds to these two ARE bearing regions of CD3zeta 3'-UTR. Knockdown of HuR resulted in decreased expression of the CD3zeta chain,whereas overexpression led to the increase of CD3zeta chain levels. Additionally,overexpression of HuR in human T cells resulted in increased mRNA stability of CD3zeta. Our results identify the 3'-UTR of CD3zeta as a novel target for the mRNA-stabilizing protein HuR. Thus,the absence of two critical AREs in the alternatively spliced CD3zeta 3'-UTR found in SLE T cells may result in decreased HuR binding,representing a possible molecular mechanism contributing to the reduced stability and expression of CD3zeta in SLE.
View Publication
Wong KK et al. (AUG 2010)
Journal of leukocyte biology 88 2 361--72
The role of CD200 in immunity to B cell lymphoma.
CD200 is a transmembrane protein broadly expressed on a variety of cell types,which delivers immunoregulatory signals through binding to receptors (CD200Rs) expressed on monocytes/myeloid cells and T lymphocytes. Signals delivered through the CD200:CD200R axis have been shown to play an important role in the regulation of anti-tumor immunity,and overexpression of CD200 has been reported in a number of malignancies,including CLL,as well as on cancer stem cells. We investigated the effect of CD200 blockade in vitro on a generation of CTL responses against a poorly immunogenic CD200+ lymphoma cell line and fresh cells obtained from CLL patients using anti-CD200 mAb and CD200-specific siRNAs. Suppression of functional expression of CD200 augmented killing of the CD200+ cells,as well as production of the inflammatory cytokines IFN-gamma and TNF-alpha by effector PBMCs. Killing was mediated by CD8+ cytotoxic T cells,and CD4+ T cells play an important role in CD200-mediated suppression of CTL responses. Our data suggest that CD200 blockade may represent a novel approach to clinical treatment of CLL.
View Publication
Chuck MI et al. (MAR 2010)
Journal of immunology (Baltimore,Md. : 1950) 184 5 2476--86
The role of the LAT-PLC-gamma1 interaction in T regulatory cell function.
The interaction between the linker for activation of T cells (LAT) with PLC-gamma1 is important for TCR-mediated Ca(2+) signaling and MAPK activation. Knock-in mice harboring a mutation at the PLC-gamma1 binding site (Y136) of LAT develop a severe lymphoproliferative syndrome. These mice have defective thymic development and selection and lack natural regulatory T cells,implicating a breakdown of both central and peripheral tolerance. To bypass this developmental defect,we developed a conditional knock-in line in which only LATY136F is expressed in mature T cells after deletion of the wild type LAT allele. Analysis of LATY136F T cells indicated that the interaction between LAT and PLC-gamma1 plays an important role in TCR-mediated signaling,proliferation,and IL-2 production. Furthermore,the deletion of LAT induced development of the lymphoproliferative syndrome in these mice. Although Foxp3(+) natural Treg cells were present in these mice after deletion,they were unable to suppress the proliferation of conventional T cells. Our data indicate that the binding of LAT to PLC-gamma1 is essential for the suppressive function of CD4(+)CD25(+) regulatory T cells.
View Publication