Hochwald SN et al. ( 2009)
Cell cycle (Georgetown,Tex.) 8 15 2435--2443
A novel small molecule inhibitor of FAK decreases growth of human pancreatic cancer.
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is overexpressed in many types of tumors,including pancreatic cancer,and plays an important role in cell adhesion and survival signaling. Pancreatic cancer is a lethal disease and is very resistant to chemotherapy,and FAK has been shown recently to assist in tumor cell survival. Therefore,FAK is an excellent potential target for anti-cancer therapy. We identified a novel small molecule inhibitor (1,2,4,5-Benzenetetraamine tetrahydrochloride,that we called Y15) targeting the main autophosphorylation site of FAK and hypothesized that it would be an effective treatment strategy against human pancreatic cancer. Y15 specifically blocked phosphorylation of Y397-FAK and total phosphorylation of FAK. It directly inhibited FAK autophosphorylation in a dose- and time-dependent manner. Furthermore,Y15 increased pancreatic cancer cell detachment and inhibited cell adhesion in a dose-dependent manner. Y15 effectively caused human pancreatic tumor regression in vivo,when administered alone and its effects were synergistic with gemcitabine chemotherapy. This was accompanied by a decrease in Y397-phosphorylation of FAK in the tumors treated with Y15. Thus,targeting the Y397 site of FAK in pancreatic cancer with the small molecule inhibitor,1,2,4,5-Benzenetetraamine tetrahydrochloride,is a potentially effective treatment strategy in this deadly disease.
View Publication
Ibarra I et al. (DEC 2007)
Genes & development 21 24 3238--43
A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells.
microRNA (miRNA) expression profiles are often characteristic of specific cell types. The mouse mammary epithelial cell line,Comma-Dbeta,contains a population of self-renewing progenitor cells that can reconstitute the mammary gland. We purified this population and determined its miRNA signature. Several microRNAs,including miR-205 and miR-22,are highly expressed in mammary progenitor cells,while others,including let-7 and miR-93,are depleted. Let-7 sensors can be used to prospectively enrich self-renewing populations,and enforced let-7 expression induces loss of self-renewing cells from mixed cultures.
View Publication
Sekimoto E et al. (FEB 2007)
Cancer research 67 3 1184--92
A single-chain Fv diabody against human leukocyte antigen-A molecules specifically induces myeloma cell death in the bone marrow environment.
Cross-linked human leukocyte antigen (HLA) class I molecules have been shown to mediate cell death in neoplastic lymphoid cells. However,clinical application of an anti-HLA class I antibody is limited by possible side effects due to widespread expression of HLA class I molecules in normal tissues. To reduce the unwanted Fc-mediated functions of the therapeutic antibody,we have developed a recombinant single-chain Fv diabody (2D7-DB) specific to the alpha2 domain of HLA-A. Here,we show that 2D7-DB specifically induces multiple myeloma cell death in the bone marrow environment. Both multiple myeloma cell lines and primary multiple myeloma cells expressed HLA-A at higher levels than normal myeloid cells,lymphocytes,or hematopoietic stem cells. 2D7-DB rapidly induced Rho activation and robust actin aggregation that led to caspase-independent death in multiple myeloma cells. This cell death was completely blocked by Rho GTPase inhibitors,suggesting that Rho-induced actin aggregation is crucial for mediating multiple myeloma cell death. Conversely,2D7-DB neither triggered Rho-mediated actin aggregation nor induced cell death in normal bone marrow cells despite the expression of HLA-A. Treatment with IFNs,melphalan,or bortezomib enhanced multiple myeloma cell death induced by 2D7-DB. Furthermore,administration of 2D7-DB resulted in significant tumor regression in a xenograft model of human multiple myeloma. These results indicate that 2D7-DB acts on multiple myeloma cells differently from other bone marrow cells and thus provide the basis for a novel HLA class I-targeting therapy against multiple myeloma.
View Publication
Jenkins RB et al. (OCT 2006)
Cancer research 66 20 9852--61
A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma.
Combined deletion of chromosomes 1p and 19q is associated with improved prognosis and responsiveness to therapy in patients with anaplastic oligodendroglioma. The deletions usually involve whole chromosome arms,suggesting a t(1;19)(q10;p10). Using stem cell medium,we cultured a few tumors. Paraffin-embedded tissue was obtained from 21 Mayo Clinic patients and 98 patients enrolled in 2 North Central Cancer Treatment Group (NCCTG) low-grade glioma trials. Interphase fusion of CEP1 and 19p12 probes detected the t(1;19). 1p/19q deletions were evaluated by fluorescence in situ hybridization. Upon culture,one oligodendroglioma contained an unbalanced 45,XX,t(1;19)(q10;p10). CEP1/19p12 fusion was observed in all metaphases and 74% of interphase nuclei. Among Mayo Clinic oligodendrogliomas,the prevalence of fusion was 81%. Among NCCTG patients,CEP1/19p12 fusion prevalence was 55%,47%,and 0% among the oligodendrogliomas,mixed oligoastrocytomas,and astrocytomas,respectively. Ninety-one percent of NCCTG gliomas with 1p/19q deletion and 12% without 1p/19q deletion had CEP1/19p12 fusion (P textless 0.001,chi(2) test). The median overall survival (OS) for all patients was 8.1 years without fusion and 11.9 years with fusion (P = 0.003). The median OS for patients with low-grade oligodendroglioma was 9.1 years without fusion and 13.0 years with fusion (P = 0.01). Similar significant median OS differences were observed for patients with combined 1p/19q deletions. The absence of alterations was associated with a significantly shorter OS for patients who received higher doses of radiotherapy. Our results strongly suggest that a t(1;19)(q10;p10) mediates the combined 1p/19q deletion in human gliomas. Like combined 1p/19q deletion,the 1;19 translocation is associated with superior OS and progression-free survival in low-grade glioma patients.
View Publication
Kanzaki H et al. ( 2016)
Scientific Reports 6 August 32259
A-Disintegrin and Metalloproteinase (ADAM) 17 enzymatically degrades interferon-gamma
Interferon-gamma (IFN-γ) is a pleiotropic cytokine that exerts anti-tumor and anti-osteoclastogenic effects. Although transcriptional and post-transcriptional regulation of IFN-γ is well understood,subsequent modifications of secreted IFN-γ are not fully elucidated. Previous research indicates that some cancer cells escape immune surveillance and metastasize into bone tissue by inducing osteoclastic bone resorption. Peptidases of the a-disintegrin and metalloproteinase (ADAM) family are implicated in cancer cell proliferation and tumor progression. We hypothesized that the ADAM enzymes expressed by cancer cells degrades IFN-γ and attenuates IFN-γ-mediated anti-tumorigenic and anti-osteoclastogenic effects. Recombinant ADAM17 degraded IFN-γ into small fragments. The addition of ADAM17 to the culture supernatant of stimulated mouse splenocytes decreased IFN-γ concentration. However,ADAM17 inhibition in the stimulated mouse T-cells prevented IFN-γ degradation. ADAM17-expressing human breast cancer cell lines MCF-7 and MDA-MB-453 also degraded recombinant IFN-γ,but this was attenuated by ADAM17 inhibition. Degraded IFN-γ lost the functionality including the inhibititory effect on osteoclastogenesis. This is the first study to demonstrate the extracellular proteolytic degradation of IFN-γ by ADAM17. These results suggest that ADAM17-mediated degradation of IFN-γ may block the anti-tumorigenic and anti-osteoclastogenic effects of IFN-γ. ADAM17 inhibition may be useful for the treatment of attenuated cancer immune surveillance and/or bone metastases.
View Publication
Zhou L et al. (JUL 2011)
The Journal of biological chemistry 286 28 25211--23
Aberrant epigenetic and genetic marks are seen in myelodysplastic leukocytes and reveal Dock4 as a candidate pathogenic gene on chromosome 7q.
Myelodysplastic syndromes (MDS) are characterized by abnormal and dysplastic maturation of all blood lineages. Even though epigenetic alterations have been seen in MDS marrow progenitors,very little is known about the molecular alterations in dysplastic peripheral blood cells. We analyzed the methylome of MDS leukocytes by the HELP assay and determined that it was globally distinct from age-matched controls and was characterized by numerous novel,aberrant hypermethylated marks that were located mainly outside of CpG islands and preferentially affected GTPase regulators and other cancer-related pathways. Additionally,array comparative genomic hybridization revealed that novel as well as previously characterized deletions and amplifications could also be visualized in peripheral blood leukocytes,thus potentially reducing the need for bone marrow samples for future studies. Using integrative analysis,potentially pathogenic genes silenced by genetic deletions and aberrant hypermethylation in different patients were identified. DOCK4,a GTPase regulator located in the commonly deleted 7q31 region,was identified by this unbiased approach. Significant hypermethylation and reduced expression of DOCK4 in MDS bone marrow stem cells was observed in two large independent datasets,providing further validation of our findings. Finally,DOCK4 knockdown in primary marrow CD34(+) stem cells led to decreased erythroid colony formation and increased apoptosis,thus recapitulating the bone marrow failure seen in MDS. These findings reveal widespread novel epigenetic alterations in myelodysplastic leukocytes and implicate DOCK4 as a pathogenic gene located on the 7q chromosomal region.
View Publication
Kharas MG et al. (SEP 2008)
The Journal of clinical investigation 118 9 3038--50
Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells.
Some cases of pre-B cell acute lymphoblastic leukemia (pre-B-ALL) are caused by the Philadelphia (Ph) chromosome-encoded BCR-ABL oncogene,and these tend to have a poor prognosis. Inhibitors of the PI3K/AKT pathway reduce BCR-ABL-mediated transformation in vitro; however,the specific PI3K isoforms involved are poorly defined. Using a murine model of Ph+ pre-B-ALL,we found that deletion of both Pik3r1 and Pik3r2,genes encoding class IA PI3K regulatory isoforms,severely impaired transformation. BCR-ABL-dependent pre/pro-B cell lines could be established at low frequency from progenitors that lacked these genes,but the cells were smaller,proliferated more slowly,and failed to cause leukemia in vivo. These cell lines displayed nearly undetectable PI3K signaling function and were resistant to the PI3K inhibitor wortmannin. However,they maintained activation of mammalian target of rapamycin (mTOR) and were more sensitive to rapamycin. Treatment with rapamycin caused feedback activation of AKT in WT cell lines but not PI3K-deficient lines. A dual inhibitor of PI3K and mTOR,PI-103,was more effective than rapamycin at suppressing proliferation of mouse pre-B-ALL and human CD19+CD34+)Ph+ ALL leukemia cells treated with the ABL kinase inhibitor imatinib. Our findings provide mechanistic insights into PI3K dependency in oncogenic networks and provide a rationale for targeting class IA PI3K,alone or together with mTOR,in the treatment of Ph+ ALL.
View Publication
Swift S et al. (MAY 2010)
Blood 115 21 4254--63
Absence of functional EpoR expression in human tumor cell lines.
Certain oncology trials showed worse clinical outcomes in the erythropoiesis-stimulating agent (ESA) arm. A potential explanation was that ESA-activated erythropoietin (Epo) receptors (EpoRs) promoted tumor cell growth. Although there were supportive data from preclinical studies,those findings often used invalidated reagents and methodologies and were in conflict with other studies. Here,we further investigate the expression and function of EpoR in tumor cell lines. EpoR mRNA levels in 209 human cell lines representing 16 tumor types were low compared with ESA-responsive positive controls. EpoR protein production was evaluated in a subset of 66 cell lines using a novel anti-EpoR antibody. EpoR(+) control cells had an estimated 10 000 to 100 000 EpoR dimers/cell. In contrast,54 of 61 lines had EpoR protein levels lower than 100 dimers/cell. Cell lines with the highest EpoR protein levels (400-3200 dimers/cell) were studied further,and,although one line,NCI-H661,bound detectable levels of [(125)I]-recombinant human Epo (rHuEpo),none showed evidence of ESA-induced EpoR activation. There was no increased phosphorylation of STAT5,AKT,ERK,or S6RP with rHuEpo. In addition,EpoR knockdown with siRNAs did not affect viability in 2 cell lines previously reported to express functional EpoR (A2780 and SK-OV-3). These results conflict with the hypothesis that EpoR is functionally expressed in tumors.
View Publication
Kline MP et al. (JUL 2007)
Leukemia 21 7 1549--60
ABT-737, an inhibitor of Bcl-2 family proteins, is a potent inducer of apoptosis in multiple myeloma cells.
Disruption of pathways leading to programmed cell death plays a major role in most malignancies,including multiple myeloma (MM). ABT-737 is a BH3 mimetic small-molecule inhibitor that binds with high affinity to Bcl-2 and Bcl-xL,preventing the sequestration of proapoptotic molecules and shifting the cell survival/apoptosis balance toward apoptosis induction. In this study,we show that ABT-737 is cytotoxic to MM cell lines,including those resistant to conventional therapies,and primary tumor cells. Flow cytometric analysis of intracellular levels of Bcl-2 family proteins demonstrates a clear inversion of the Bax/Bcl-2 ratio leading to induction of apoptosis. Activation of the mitochondrial apoptosis pathway was indicated by mitochondrial membrane depolarization and caspase cleavage. Additionally,several signaling pathways known to be important for MM cell survival are disrupted following treatment with ABT-737. The impact of ABT-737 on survival could not be overcome by the addition of interleukin-6,vascular endothelial growth factor or insulin-like growth factor,suggesting that ABT-737 may be effective in preventing the growth and survival signals provided by the microenvironment. These data indicate that therapies targeting apoptotic pathways may be effective in MM treatment and warrant clinical evaluation of ABT-737 and similar drugs alone or in combination with other agents in the setting of MM.
View Publication
McKenna KC and Kapp JA (AUG 2006)
Journal of immunology (Baltimore,Md. : 1950) 177 3 1599--608
Accumulation of immunosuppressive CD11b+ myeloid cells correlates with the failure to prevent tumor growth in the anterior chamber of the eye.
The purpose of these studies is to determine why an immunogenic tumor grows unchecked in the anterior chamber (a.c.) of the eye. The OVA-expressing EL4 tumor,E.G7-OVA,was injected into the a.c. or skin of immunocompetent and immunodeficient mice. Tumor growth and tumor-specific immune responses were monitored. Ocular tumor-infiltrating leukocytes were characterized phenotypically and functionally. Growth of E.G7-OVA was inhibited when limiting numbers of cells were injected in the skin but not in the a.c. of C57BL/6 mice,although both routes primed OVA-specific immune responses,which prevented the growth of a subsequent injection with E.G7-OVA in the skin or opposite eye. Tumor regression was OVA-specific because growth of the parental EL-4 tumor was not inhibited in primed mice. E.G7-OVA growth in the skin was not inhibited in immunodeficient Rag(-/-) or CD8 T cell-deficient mice,suggesting that CD8(+) CTLs mediate tumor elimination. CD8(+) T cell numbers were significantly increased in eyes of mice primed with E.G7-OVA,but few were detected in primary ocular tumors. Nevertheless,growth of E.G7-OVA was retarded in the a.c. of TCR-transgenic OT-I mice,and CD8(+) T cell numbers were increased within eyes,suggesting that tumor-specific CD8(+) CTLs migrated into and controlled primary ocular tumor growth. E.G7-OVA did not lose antigenicity or become immunosuppressive after 13 days of growth in the eye. However,CD11b(+) cells accumulated in primary ocular tumors and contained potent immunosuppressive activity when assayed in vitro. Thus,CD11b(+) cells that accumulate within the eye as tumors develop in the a.c. may contribute to immune evasion by primary ocular tumors by inhibiting CTLs within the eye.
View Publication