CRISPR Activation Screens Systematically Identify Factors that Drive Neuronal Fate and Reprogramming.
Comprehensive identification of factors that can specify neuronal fate could provide valuable insights into lineage specification and reprogramming,but systematic interrogation of transcription factors,and their interactions with each other,has proven technically challenging. We developed a CRISPR activation (CRISPRa) approach to systematically identify regulators of neuronal-fate specification. We activated expression of all endogenous transcription factors and other regulators via a pooled CRISPRa screen in embryonic stem cells,revealing genes including epigenetic regulators such as Ezh2 that can induce neuronal fate. Systematic CRISPR-based activation of factor pairs allowed us to generate a genetic interaction map for neuronal differentiation,with confirmation of top individual and combinatorial hits as bona fide inducers of neuronal fate. Several factor pairs could directly reprogram fibroblasts into neurons,which shared similar transcriptional programs with endogenous neurons. This study provides an unbiased discovery approach for systematic identification of genes that drive cell-fate acquisition.
View Publication
Reference
J. Navarro-Barriuso et al. (OCT 2018)
Scientific reports 8 1 14985
Comparative transcriptomic profile of tolerogenic dendritic cells differentiated with vitamin D3, dexamethasone and rapamycin.
Tolerogenic dendritic cell (tolDC)-based therapies have become a promising approach for the treatment of autoimmune diseases by their potential ability to restore immune tolerance in an antigen-specific manner. However,the broad variety of protocols used to generate tolDC in vitro and their functional and phenotypical heterogeneity are evidencing the need to find robust biomarkers as a key point towards their translation into the clinic,as well as better understanding the mechanisms involved in the induction of immune tolerance. With that aim,in this study we have compared the transcriptomic profile of tolDC induced with either vitamin D3 (vitD3-tolDC),dexamethasone (dexa-tolDC) or rapamycin (rapa-tolDC) through a microarray analysis in 5 healthy donors. The results evidenced that common differentially expressed genes could not be found for the three different tolDC protocols. However,individually,CYP24A1,MUCL1 and MAP7 for vitD3-tolDC; CD163,CCL18,C1QB and C1QC for dexa-tolDC; and CNGA1 and CYP7B1 for rapa-tolDC,constituted good candidate biomarkers for each respective cellular product. In addition,a further gene set enrichment analysis of the data revealed that dexa-tolDC and vitD3-tolDC share several immune regulatory and anti-inflammatory pathways,while rapa-tolDC seem to be playing a totally different role towards tolerance induction through a strong immunosuppression of their cellular processes.
View Publication
Reference
E. L. Johnson et al. (OCT 2018)
Nature communications 9 1 4136
Sequencing HIV-neutralizing antibody exons and introns reveals detailed aspects of lineage maturation.
The developmental pathways of broadly neutralizing antibodies (bNAbs) against HIV are of great importance for the design of immunogens that can elicit protective responses. Here we show the maturation features of the HIV-neutralizing anti-V1V2 VRC26 lineage by simultaneously sequencing the exon together with the downstream intron of VRC26 members. Using the mutational landscapes of both segments and the selection-free nature of the intron region,we identify multiple events of amino acid mutational convergence in the complementarity-determining region 3 (CDR3) of VRC26 members,and determine potential intermediates with diverse CDR3s to a late stage bNAb from 2 years prior to its isolation. Moreover,we functionally characterize the earliest neutralizing intermediates with critical CDR3 mutations,with some emerging only 14 weeks after initial lineage detection and containing only {\~{}}6{\%} V gene mutations. Our results thus underscore the utility of analyzing exons and introns simultaneously for studying antibody maturation and repertoire selection.
View Publication
Reference
K. T. Chow et al. (NOV 2018)
Journal of immunology (Baltimore,Md. : 1950) 201 10 3036--3050
Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells.
We examined the signaling pathways and cell type-specific responses of IFN regulatory factor (IRF) 5,an immune-regulatory transcription factor. We show that the protein kinases IKK$\alpha$,IKK$\beta$,IKK$\epsilon$,and TANK-binding kinase 1 each confer IRF5 phosphorylation/dimerization,thus extending the family of IRF5 activator kinases. Among primary human immune cell subsets,we found that IRF5 is most abundant in plasmacytoid dendritic cells (pDCs). Flow cytometric cell imaging revealed that IRF5 is specifically activated by endosomal TLR signaling. Comparative analyses revealed that IRF3 is activated in pDCs uniquely through RIG-I-like receptor (RLR) signaling. Transcriptomic analyses of pDCs show that the partitioning of TLR7/IRF5 and RLR/IRF3 pathways confers differential gene expression and immune cytokine production in pDCs,linking IRF5 with immune regulatory and proinflammatory gene expression. Thus,TLR7/IRF5 and RLR-IRF3 partitioning serves to polarize pDC response outcome. Strategies to differentially engage IRF signaling pathways should be considered in the design of immunotherapeutic approaches to modulate or polarize the immune response for specific outcome.
View Publication
Reference
L. Megrelis et al. ( 2018)
Frontiers in immunology 9 2001
Fam65b Phosphorylation Relieves Tonic RhoA Inhibition During T Cell Migration.
We previously identified Fam65b as an atypical inhibitor of the small G protein RhoA. Using a conditional model of a Fam65b-deficient mouse,we first show that Fam65b restricts spontaneous RhoA activation in resting T lymphocytes and regulates intranodal T cell migration in vivo. We next aimed at understanding,at the molecular level,how the brake that Fam65b exerts on RhoA can be relieved upon signaling to allow RhoA activation. Here,we show that chemokine stimulation phosphorylates Fam65b in T lymphocytes. This post-translational modification decreases the affinity of Fam65b for RhoA and favors Fam65b shuttling from the plasma membrane to the cytosol. Functionally,we show that the degree of Fam65b phosphorylation controls some cytoskeletal alterations downstream active RhoA such as actin polymerization,as well as T cell migration in vitro. Altogether,our results show that Fam65b expression and phosphorylation can finely tune the amount of active RhoA in order to favor optimal T lymphocyte motility.
View Publication
Reference
S. Korniotis et al. ( 2018)
Frontiers in immunology 9 2007
Hematopoietic Stem/Progenitor Cell Dependent Participation of Innate Lymphoid Cells in Low-Intensity Sterile Inflammation.
Hematopoietic stem/progenitor cells (HSPC) are characterized by their unique capacities of self-renewal and multi-differentiation potential. This second property makes them able to adapt their differentiation profile depending on the local environment they reach. Taking advantage of an animal model of peritonitis,induced by injection of the TLR-2 ligand,zymosan,we sought to study the relationship between bone marrow-derived hematopoietic stem/progenitor cells (BM-HSPCs) and innate lymphoid cells (ILCs) regarding their emergence and differentiation at the site of inflammation. Our results demonstrate that the strength of the inflammatory signals affects the capacity of BM-derived HSPCs to migrate and give rise in situ to ILCs. Both low- and high-dose of zymosan injections trigger the appearance of mature ILCs in the peritoneal cavity where the inflammation occurs. Herein,we show that only in low-dose injected mice,the recovered ILCs are dependent on an in situ differentiation of BM-derived HSPCs and/or ILC2 precursors (ILC2P) wherein high-dose,the stronger inflammatory environment seems to be able to induce the emergence of ILCs independently of BM-derived HSPCs. We suggest that a relationship between HSPCs and ILCs seems to be affected by the strength of the inflammatory stimuli opening new perspectives in the manipulation of these early hematopoietic cells.
View Publication
Reference
L. Cao et al. (SEP 2018)
Nature communications 9 1 3693
Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer.
As the sole target of broadly neutralizing antibodies (bnAbs) to HIV,the envelope glycoprotein (Env) trimer is the focus of vaccination strategies designed to elicit protective bnAbs in humans. Because HIV Env is densely glycosylated with 75-90 N-glycans per trimer,most bnAbs use or accommodate them in their binding epitope,making the glycosylation of recombinant Env a key aspect of HIV vaccine design. Upon analysis of three HIV strains,we here find that site-specific glycosylation of Env from infectious virus closely matches Envs from corresponding recombinant membrane-bound trimers. However,viral Envs differ significantly from recombinant soluble,cleaved (SOSIP) Env trimers,strongly impacting antigenicity. These results provide a benchmark for virus Env glycosylation needed for the design of soluble Env trimers as part of an overall HIV vaccine strategy.
View Publication
Reference
C. Petes et al. (SEP 2018)
Scientific Reports 8 1 13704
IL-27 amplifies cytokine responses to Gram-negative bacterial products and Salmonella typhimurium infection.
Cytokine responses from monocytes and macrophages exposed to bacteria are of particular importance in innate immunity. Focusing on the impact of the immunoregulatory cytokine interleukin (IL)-27 on control of innate immune system responses,we examined human immune responses to bacterial products and bacterial infection by E. coli and S. typhimurium. Since the effect of IL-27 treatment in human myeloid cells infected with bacteria is understudied,we treated human monocytes and macrophages with IL-27 and either LPS,flagellin,or bacteria,to investigate the effect on inflammatory signaling and cytokine responses. We determined that simultaneous stimulation with IL-27 and LPS derived from E. coli or S. typhimurium resulted in enhanced IL-12p40,TNF-$\alpha$,and IL-6 expression compared to that by LPS alone. To elucidate if IL-27 manipulated the cellular response to infection with bacteria,we infected IL-27 treated human macrophages with S. typhimurium. While IL-27 did not affect susceptibility to S. typhimurium infection or S. typhimurium-induced cell death,IL-27 significantly enhanced proinflammatory cytokine production in infected cells. Taken together,we highlight a role for IL-27 in modulating innate immune responses to bacterial infection.
View Publication
Burkholderia pseudomallei-loaded cells act as a Trojan horse to invade the brain during endotoxemia.
Neurologic melioidosis occurs in both human and animals; however,the mechanism by which the pathogen Burkholderia pseudomallei invades the central nervous system (CNS) remains unclear. B. pseudomallei-loaded Ly6C cells have been suggested as a putative portal; however,during melioidosis,lipopolysaccharide (LPS) can drive disruption of the blood-brain barrier (BBB). This study aims to test whether the Trojan horse-like mechanism occurs during endotoxemia. The expression levels of cerebral cytokines,chemokines and cell adhesion molecules; the activation of astrocytes,microglia and endothelial cells; and the increased vascular permeability and brain-infiltrating leukocytes were evaluated using B. pseudomallei,B. thailandensis,B. cenocepacia and B. multivorans LPS-induced brains. Accordingly,different degrees of BBB damage in those brains with endotoxemia were established. The B. multivorans LPS-induced brain exhibited the highest levels of disruptive BBB according to the above mediators/indicators. Into these distinct groups of endotoxemic mice,B. pseudomallei-loaded Ly6C cells or free B. pseudomallei were adoptively transferred at equal bacterial concentrations (103 CFU). The bacterial load and number of cases of meningeal neutrophil infiltration in the brains of animals treated with B. pseudomallei-loaded Ly6C cells were higher than those in brains induced by free B. pseudomallei in any of the endotoxemic groups. In particular,these results were reproducible in B. multivorans LPS-induced brains. We suggest that B. pseudomallei-loaded cells can act as a Trojan horse and are more effective than free B. pseudomallei in invading the CNS under septic or endotoxemic conditions even when there is a high degree of BBB disruption.
View Publication
Reference
Y. P. Zhu et al. (AUG 2018)
Cell reports 24 9 2329--2341.e8
Identification of an Early Unipotent Neutrophil Progenitor with Pro-tumoral Activity in Mouse and Human Bone Marrow.
Neutrophils are short-lived cells that play important roles in both health and disease. Neutrophils and monocytes originate from the granulocyte monocyte progenitor (GMP) in bone marrow; however,unipotent neutrophil progenitors are not well defined. Here,we use cytometry by time of flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) methodologies to identify a committed unipotent early-stage neutrophil progenitor (NeP) in adult mouse bone marrow. Importantly,we found a similar unipotent NeP (hNeP) in human bone marrow. Both NeP and hNeP generate only neutrophils. NeP and hNeP both significantly increase tumor growth when transferred into murine cancer models,including a humanized mouse model. hNeP are present in the blood of treatment-naive melanoma patients but not of healthy subjects. hNeP can be readily identified by flow cytometry and could be used as a biomarker for early cancer discovery. Understanding the biology of hNeP should allow the development of new therapeutic targets for neutrophil-related diseases,including cancer.
View Publication
Reference
M. van den Hurk et al. ( 2018)
Frontiers in Molecular Neuroscience
Patch-Seq Protocol to Analyze the Electrophysiology, Morphology and Transcriptome of Whole Single Neurons Derived From Human Pluripotent Stem Cells
The human brain is composed of a complex assembly of about 171 billion heterogeneous cellular units (86 billion neurons and 85 billion non-neuronal glia cells). A comprehensive description of brain cells is necessary to understand the nervous system in health and disease. Recently,advances in genomics have permitted the accurate analysis of the full transcriptome of single cells (scRNA-seq). We have built upon such technical progress to combine scRNA-seq with patch-clamping electrophysiological recording and morphological analysis of single human neurons in vitro. This new powerful method,referred to as Patch-seq,enables a thorough,multimodal profiling of neurons and permits us to expose the links between functional properties,morphology,and gene expression. Here,we present a detailed Patch-seq protocol for isolating single neurons from in vitro neuronal cultures. We have validated the Patch-seq whole-transcriptome profiling method with human neurons generated from embryonic and induced pluripotent stem cells (ESCs/iPSCs) derived from healthy subjects,but the procedure may be applied to any kind of cell type in vitro. Patch-seq may be used on neurons in vitro to profile cell types and states in depth to unravel the human molecular basis of neuronal diversity and investigate the cellular mechanisms underlying brain disorders.
View Publication
Reference
M. T. Dell'anno et al. ( 2018)
Nature Communications
Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit
Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option,but optimal cell type and mechanistic aspects remain poorly defined. Here,we describe robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells derived from the developing spinal cord and maintained in self-renewing adherent conditions for long periods. Extensive elongation of both graft and host axons occurs. Improved functional recovery after transplantation depends on neural relay function through the grafted neurons,requires the matching of neural identity to the anatomical site of injury,and is accompanied by expression of specific marker proteins. Thus,human neuroepithelial stem cells may provide an anatomically specific relay function for spinal cord injury recovery.
View Publication