技术资料
-
(Oct 2024) Pharmaceutics 16 10A Human Brain-Chip for Modeling Brain Pathologies and Screening Blood–Brain Barrier Crossing Therapeutic Strategies
Background/Objectives: The limited translatability of preclinical experimental findings to patients remains an obstacle for successful treatment of brain diseases. Relevant models to elucidate mechanisms behind brain pathogenesis,including cell-specific contributions and cell-cell interactions,and support successful targeting and prediction of drug responses in humans are urgently needed,given the species differences in brain and blood-brain barrier (BBB) functions. Human microphysiological systems (MPS),such as Organ-Chips,are emerging as a promising approach to address these challenges. Here,we examined and advanced a Brain-Chip that recapitulates aspects of the human cortical parenchyma and the BBB in one model. Methods: We utilized human primary astrocytes and pericytes,human induced pluripotent stem cell (hiPSC)-derived cortical neurons,and hiPSC-derived brain microvascular endothelial-like cells and included for the first time on-chip hiPSC-derived microglia. Results: Using Tumor necrosis factor alpha (TNF?) to emulate neuroinflammation,we demonstrate that our model recapitulates in vivo-relevant responses. Importantly,we show microglia-derived responses,highlighting the Brain-Chip’s sensitivity to capture cell-specific contributions in human disease-associated pathology. We then tested BBB crossing of human transferrin receptor antibodies and conjugated adeno-associated viruses. We demonstrate successful in vitro/in vivo correlation in identifying crossing differences,underscoring the model’s capacity as a screening platform for BBB crossing therapeutic strategies and ability to predict in vivo responses. Conclusions: These findings highlight the potential of the Brain-Chip as a reliable and time-efficient model to support therapeutic development and provide mechanistic insights into brain diseases,adding to the growing evidence supporting the value of MPS in translational research and drug discovery. View Publication -
M. V. J. Braham et al. (apr 2019) Advanced healthcare materials e1801444A Human Hematopoietic Niche Model Supporting Hematopoietic Stem and Progenitor Cells In Vitro.
Niches in the bone marrow regulate hematopoietic stem and progenitor cell (HSPC) fate and behavior through cell-cell interactions and soluble factor secretion. The niche-HSPC crosstalk is a very complex process not completely elucidated yet. To aid further investigation of this crosstalk,a functional in vitro 3D model that closely represents the main supportive compartments of the bone marrow is developed. Different combinations of human stromal cells and hydrogels are tested for their potential to maintain CD34+ HSPCs. Cell viability,clonogenic hematopoietic potential,and surface marker expression are assessed over time. Optimal HSPC support is obtained in presence of adipogenic and osteogenic cells,together with progenitor derived endothelial cells. When cultured in a bioactive hydrogel,the supportive cells self-assemble into a hypoxic stromal network,stimulating CD34+ CD38+ cell formation,while maintaining the pool of CD34+ 38- HSPCs. HSPC clusters colocalize with the stromal networks,in close proximity to sinusoidal clusters of CD31+ endothelial cells. Importantly,the primary in vitro niche model supports HSPCs with no cytokine addition. Overall,the engineered primary 3D bone marrow environment provides an easy and reliable model to further investigate interactions between HSPCs and their endosteal and perivascular niches,in the context of normal hematopoiesis or blood-related diseases. View Publication -
(Apr 2025) PLOS One 20 4A human iPSC-derived midbrain neural stem cell model of prenatal opioid exposure and withdrawal: A proof of concept study
A growing body of clinical literature has described neurodevelopmental delays in infants with chronic prenatal opioid exposure and withdrawal. Despite this,the mechanism of how opioids impact the developing brain remains unknown. Here,we developed an in vitro model of prenatal morphine exposure and withdrawal using healthy human induced pluripotent stem cell (iPSC)-derived midbrain neural progenitors in monolayer. To optimize our model,we identified that a longer neural induction and regional patterning period increases expression of canonical opioid receptors mu and kappa in midbrain neural progenitors compared to a shorter protocol (OPRM1,two-tailed t-test,p =? 0.004; OPRK1,p =? 0.0003). Next,we showed that the midbrain neural progenitors derived from a longer iPSC neural induction also have scant toll-like receptor 4 (TLR4) expression,a key player in neonatal opioid withdrawal syndrome pathophysiology. During morphine withdrawal,differentiating neural progenitors experience cyclic adenosine monophosphate overshoot compared to cell exposed to vehicle (p =? 0.0496) and morphine exposure conditions (p,=? 0.0136,1-way ANOVA). Finally,we showed that morphine exposure and withdrawal alters proportions of differentiated progenitor cell fates (2-way ANOVA,F =? 16.05,p 0.0001). Chronic morphine exposure increased proportions of nestin positive progenitors (p =? 0.0094),and decreased proportions of neuronal nuclear antigen positive neurons (NEUN) (p =? 0.0047) compared to those exposed to vehicle. Morphine withdrawal decreased proportions of glial fibrillary acidic protein positive cells of astrocytic lineage (p =? 0.044),and increased proportions of NEUN-positive neurons (p 0.0001) compared to those exposed to morphine only. Applications of this paradigm include mechanistic studies underscoring neural progenitor cell fate commitments in early neurodevelopment during morphine exposure and withdrawal. View Publication -
(Jun 2025) Bio-protocol 15 12A Hybrid 2D/3D Approach for Neural Differentiation Into Telencephalic Organoids and Efficient Modulation of FGF8 Signaling
Human brain development relies on a finely tuned balance between the proliferation and differentiation of neural progenitor cells,followed by the migration,differentiation,and connectivity of post-mitotic neurons with region-specific identities. These processes are orchestrated by gradients of morphogens,such as FGF8. Disruption of this developmental balance can lead to brain malformations,which underlie a range of complex neurodevelopmental disorders,including epilepsy,autism,and intellectual disabilities. Studying the early stages of human brain development,whether under normal or pathological conditions,remains challenging due to ethical and technical limitations inherent to working with human fetal tissue. Recently,human brain organoids have emerged as a powerful in vitro alternative,allowing researchers to model key aspects of early brain development while circumventing many of these constraints. Unlike traditional 2D cultures,where neural progenitors and neurons are grown on flat surfaces,3D organoids form floating self-organizing aggregates that better replicate the cellular diversity and tissue architecture of the developing brain. However,3D organoid protocols often suffer from significant variability between batches and individual organoids. Furthermore,few existing protocols directly manipulate key morphogen signaling pathways or provide detailed analyses of the resulting effects on regional brain patterning.• To address these limitations,we developed a hybrid 2D/3D approach for the rapid and efficient induction of telencephalic organoids that recapitulate major steps of anterior brain development. Starting from human induced pluripotent stem cells (hiPSCs),our protocol begins with 2D neural induction using small-molecule inhibitors to achieve fast and homogenous production of neural progenitors (NPs). After dissociation,NPs are reaggregated in Matrigel droplets and cultured in spinning mini-bioreactors,where they self-organize into neural rosettes and neuroepithelial structures,surrounded by differentiating neurons. Activation of the FGF signaling pathway through the controlled addition of FGF8 to the culture medium will modulate regional identity within developing organoids,leading to the formation of distinct co-developing domains within a single organoid. Our protocol combines the speed and reproducibility of 2D induction with the structural and cellular complexity of 3D telencephalic organoids. The ability to manipulate signaling pathways provides an additional opportunity to further increase system complexity,enabling the simultaneous development of multiple distinct brain regions within a single organoid. This versatile system facilitates the study of key cellular and molecular mechanisms driving early human brain development across both telencephalic and non-telencephalic areas. Key features • This protocol builds on the method established by Chambers et al. [1] for generating 2D neural progenitors,followed by dissociation and reaggregation into 3D brain organoids.• For optimal growth and maturation,telencephalic organoids are cultured in spinning mini-bioreactors [2] or on orbital shakers.• The protocol enables the generation of telencephalic neural progenitors in 10 days and produces 3D telencephalic organoids containing neocortical neurons within one month of culture.• Addition of morphogens in the culture medium (example: FGF8) enhances cellular heterogeneity,promoting the emergence of distinct brain domains within a single organoid. View Publication -
Xia N et al. (MAR 2017) Cell reports 18 10 2533--2546A Knockin Reporter Allows Purification and Characterization of mDA Neurons from Heterogeneous Populations.
Generation of midbrain dopaminergic (mDA) neurons from human pluripotent stem cells provides a platform for inquiry into basic and translational studies of Parkinson's disease (PD). However,heterogeneity in differentiation in vitro makes it difficult to identify mDA neurons in culture or in vivo following transplantation. Here,we report the generation of a human embryonic stem cell (hESC) line with a tyrosine hydroxylase (TH)-RFP (red fluorescent protein) reporter. We validated that RFP faithfully mimicked TH expression during differentiation. Use of this TH-RFP reporter cell line enabled purification of mDA-like neurons from heterogeneous cultures with subsequent characterization of neuron transcriptional and epigenetic programs (global binding profiles of H3K27ac,H3K4me1,and 5-hydroxymethylcytosine [5hmC]) at four different stages of development. We anticipate that the tools and data described here will contribute to the development of mDA neurons for applications in disease modeling and/or drug screening and cell replacement therapies for PD. View Publication -
Serra RW et al. (MAR 2014) eLife 3 3 e02313A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype.
Approximately 70% of KRAS-positive colorectal cancers (CRCs) have a CpG island methylator phenotype (CIMP) characterized by aberrant DNA hypermethylation and transcriptional silencing of many genes. The factors involved in,and the mechanistic basis of,CIMP is not understood. Among the CIMP genes are the tumor suppressors p14(ARF),p15(INK4B),and p16(INK4A),encoded by the INK4-ARF locus. In this study,we perform an RNA interference screen and identify ZNF304,a zinc-finger DNA-binding protein,as the pivotal factor required for INK4-ARF silencing and CIMP in CRCs containing activated KRAS. In KRAS-positive human CRC cell lines and tumors,ZNF304 is bound at the promoters of INK4-ARF and other CIMP genes. Promoter-bound ZNF304 recruits a corepressor complex that includes the DNA methyltransferase DNMT1,resulting in DNA hypermethylation and transcriptional silencing. KRAS promotes silencing through upregulation of ZNF304,which drives DNA binding. Finally,we show that ZNF304 also directs transcriptional silencing of INK4-ARF in human embryonic stem cells. DOI: http://dx.doi.org/10.7554/eLife.02313.001. View Publication -
Capron C et al. (AUG 2010) Blood 116 8 1244--53A major role of TGF-beta1 in the homing capacities of murine hematopoietic stem cell/progenitors.
Transforming growth factor-beta1 (TGF-beta1) is a pleiotropic cytokine with major in vitro effects on hematopoietic stem cells (HSCs) and lymphocyte development. Little is known about hematopoiesis from mice with constitutive TGF-beta1 inactivation largely because of important embryonic lethality and development of a lethal inflammatory disorder in TGF-beta1(-/-) pups,making these studies difficult. Here,we show that no sign of the inflammatory disorder was detectable in 8- to 10-day-old TGF-beta1(-/-) neonates as judged by both the number of T-activated and T-regulator cells in secondary lymphoid organs and the level of inflammatory cytokines in sera. After T-cell depletion,the inflammatory disease was not transplantable in recipient mice. Bone marrow cells from 8- to 10-day-old TGF-beta1(-/-) neonates showed strikingly impaired short- and long-term reconstitutive activity associated with a parallel decreased in vivo homing capacity of lineage negative (Lin(-)) cells. In addition an in vitro-reduced survival of immature progenitors (Lin(-) Kit(+) Sca(+)) was observed. Similar defects were found in liver cells from TGF-beta1(-/-) embryos on day 14 after vaginal plug. These data indicate that TGF-beta1 is a critical regulator for in vivo homeostasis of the HSCs,especially for their homing potential. View Publication -
Wolf J et al. ( 2013) Breast cancer research : BCR 15 6 R109A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype.
INTRODUCTION Breast cancer stem cells are suspected to be responsible for tumour recurrence,metastasis formation as well as chemoresistance. Consequently,great efforts have been made to understand the molecular mechanisms underlying cancer stem cell maintenance. In order to study these rare cells in-vitro,they are typically enriched via mammosphere culture. Here we developed a mammosphere-based negative selection shRNAi screening system suitable to analyse the involvement of thousands of genes in the survival of cells with cancer stem cell properties. METHODS We describe a sub-population expressing the stem-like marker CD44(+)/CD24(-/low) in SUM149 that were enriched in mammospheres. To identify genes functionally involved in the maintenance of the sub-population with cancer stem cell properties,we targeted over 5000 genes by RNAi and tested their ability to grow as mammospheres. The identified candidate ATG4A was validated in mammosphere and soft agar colony formation assays. Further,we evaluated the influence of ATG4A expression on the sub-population expressing the stem-like marker CD44(+)/CD24(low). Next,the tumorigenic potential of SUM149 after up- or down-regulation of ATG4A was examined by xenograft experiments. RESULTS Using this method,Jak-STAT as well as cytokine signalling were identified to be involved in mammosphere formation. Furthermore,the autophagy regulator ATG4A was found to be essential for the maintenance of a sub-population with cancer stem cell properties and to regulate breast cancer cell tumourigenicity in vivo. CONCLUSION In summary,we present a high-throughput screening system to identify genes involved in cancer stem cell maintenance and demonstrate its utility by means of ATG4A. View Publication -
Tateno H et al. (FEB 2014) Scientific reports 4 4069A medium hyperglycosylated podocalyxin enables noninvasive and quantitative detection of tumorigenic human pluripotent stem cells.
While human pluripotent stem cells are attractive sources for cell-replacement therapies,a major concern remains regarding their tumorigenic potential. Thus,safety assessment of human pluripotent stem cell-based products in terms of tumorigenicity is critical. Previously we have identified a pluripotent stem cell-specific lectin probe rBC2LCN recognizing hyperglycosylated podocalyxin as a cell surface ligand. Here we demonstrate that hyperglycosylated podocalyxin is secreted from human pluripotent stem cells into cell culture supernatants. We establish a sandwich assay system,named the GlycoStem test,targeting the soluble hyperglycosylated podocalyxin using rBC2LCN. The GlycoStem test is sufficiently sensitive and quantitative to detect residual human pluripotent stem cells. This work provides a proof of concept for the noninvasive and quantitative detection of tumorigenic human pluripotent stem cells using cell culture supernatants. The developed method should increase the safety of human pluripotent stem cell-based cell therapies. View Publication -
Xing J et al. (MAY 2015) Scientific Reports 5 November 2014 10038A method for human teratogen detection by geometrically confined cell differentiation and migration
Unintended exposure to teratogenic compounds can lead to various birth defects; however current animal-based testing is limited by time,cost and high inter-species variability. Here,we developed a human-relevant in vitro model,which recapitulated two cellular events characteristic of embryogenesis,to identify potentially teratogenic compounds. We spatially directed mesoendoderm differentiation,epithelial-mesenchymal transition and the ensuing cell migration in micropatterned human pluripotent stem cell (hPSC) colonies to collectively form an annular mesoendoderm pattern. Teratogens could disrupt the two cellular processes to alter the morphology of the mesoendoderm pattern. Image processing and statistical algorithms were developed to quantify and classify the compounds' teratogenic potential. We not only could measure dose-dependent effects but also correctly classify species-specific drug (Thalidomide) and false negative drug (D-penicillamine) in the conventional mouse embryonic stem cell test. This model offers a scalable screening platform to mitigate the risks of teratogen exposures in human. View Publication -
Eirew P et al. (DEC 2008) Nature medicine 14 12 1384--9A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability.
Previous studies have demonstrated that normal mouse mammary tissue contains a rare subset of mammary stem cells. We now describe a method for detecting an analogous subpopulation in normal human mammary tissue. Dissociated cells are suspended with fibroblasts in collagen gels,which are then implanted under the kidney capsule of hormone-treated immunodeficient mice. After 2-8 weeks,the gels contain bilayered mammary epithelial structures,including luminal and myoepithelial cells,their in vitro clonogenic progenitors and cells that produce similar structures in secondary transplants. The regenerated clonogenic progenitors provide an objective indicator of input mammary stem cell activity and allow the frequency and phenotype of these human mammary stem cells to be determined by limiting-dilution analysis. This new assay procedure sets the stage for investigations of mechanisms regulating normal human mammary stem cells (and possibly stem cells in other tissues) and their relationship to human cancer stem cell populations. View Publication -
N. McNamee et al. (jan 2022) Translational oncology 15 1 101274A method of separating extracellular vesicles from blood shows potential clinical translation, and reveals extracellular vesicle cargo gremlin-1 as a diagnostic biomarker.
Extracellular vesicles (EVs) have potential as minimally invasive biomarkers. However,the methods most commonly used for EV retrieval rely on ultracentrifugation,are time-consuming,and unrealistic to translate to standard-of-care. We sought a method suitable for EV separation from blood that could be used in patient care. Sera from breast cancer patients and age-matched controls (n = 27 patients; n = 36 controls) were analysed to compare 6 proposed EV separation methods. The EVs were then characterised on 8 parameters. The selected method was subsequently applied to independent cohorts of sera (n = 20 patients; n = 20 controls),as proof-of-principle,investigating EVs' gremlin-1 cargo. Three independent runs with each method were very reproducible,within each given method. All isolates contained EVs,although they varied in quantity and purity. Methods that require ultracentrifugation were not superior for low volumes of sera typically available in routine standard-of-care. A CD63/CD81/CD9-coated immunobead-based method was most suitable based on EV markers' detection and minimal albumin and lipoprotein contamination. Applying this method to independent sera cohorts,EVs and their gremlin-1 cargo were at significantly higher amounts for breast cancer patients compared to controls. In conclusion,CD63/CD81/CD9-coated immunobeads may enable clinical utility of blood-based EVs as biomarkers. View Publication
过滤器
筛选结果
细胞类型
- B 细胞 236 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 452 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 103 项目
- 先天性淋巴细胞 40 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 20 项目
- 单个核细胞 92 项目
- 单核细胞 191 项目
- 多能干细胞 1985 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 471 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 983 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 204 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 107 项目
- CD8+T细胞 88 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 115 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 191 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 59 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1032 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2916 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 206 项目
- 癌症 7 项目
- 神经科学 663 项目
- 移植研究 106 项目
- 类器官 155 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 74 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 63 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 894 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 153 项目
- MethoCult 509 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 251 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号