Zhang Q et al. (AUG 2005)
Infection and immunity 73 8 5166--72
Production and characterization of monoclonal antibodies against Enterocytozoon bieneusi purified from rhesus macaques.
Enterocytozoon bieneusi spores derived from rhesus macaque feces were purified by serial salt-Percoll-sucrose-iodixanol centrifugation,resulting in two bands with different specific densities of 95.6% and 99.5% purity and with a recovery efficiency of 10.8%. An ultrastructural examination revealed typical E. bieneusi spores. Twenty-six stable hybridomas were derived from BALB/c mice immunized with spores and were cloned twice by limiting dilution or growth on semisolid medium. Four monoclonal antibodies (MAbs),reacting exclusively with spores,were further characterized. These MAbs specifically reacted with spores present in stools of humans and macaques,as visualized by immunofluorescence,and with spore walls,as visualized by immunoelectron microscopy. A blocking enzyme-linked immunosorbent assay and Western blotting revealed that the epitope recognized by 8E2 was different from those recognized by 7G2,7H2,and 12G8,which identified the same 40-kDa protein. These MAbs will be valuable tools for diagnostics,for epidemiological investigations,for host-pathogen interaction studies,and for comparative genomics and proteomics.
View Publication
Chua KY et al. (JAN 2008)
Methods in molecular biology (Clifton,N.J.) 423 509--20
Production of monoclonal antibody by DNA immunization with electroporation.
DNA immunization with in vivo electroporation is an efficient alternative protocol for the production of monoclonal antibodies (mAb). Generation of mAb by DNA immunization is a novel approach to circumvent the following technical hurdles associated with problematic antigens: low abundance and protein instability and use of recombinant proteins that lack posttranslational modifications. This chapter describes the use of a DNA-based immunization protocol for the production of mAb against a house dust mite allergen,designated as Blo t 11,which is a paramyosin homologue found in Blomia tropicalis mites. The Blo t 11 cDNA fused at the N terminus to the sequence of a signal peptide was cloned into the pCI mammalian expression vector. The DNA construct was injected intramuscularly with in vivo electroporation into mice,and the specific antibody production in mice was analyzed by enzyme-linked immunosorbent assay (ELISA). Hybridomas were generated by fusing mouse splenocytes with myeloma cells using the ClonaCell-HY Hybridoma Cloning Kit. Six hybridoma clones secreting Blo t 11 mAb were successfully generated,and these mAb are useful reagents for immunoaffinity purification and immunoassays.
View Publication
El-Far M et al. (MAR 2016)
Scientific Reports 6 22902
Proinflammatory isoforms of IL-32 as novel and robust biomarkers for control failure in HIV-infected slow progressors.
HIV-infected slow progressors (SP) represent a heterogeneous group of subjects who spontaneously control HIV infection without treatment for several years while showing moderate signs of disease progression. Under conditions that remain poorly understood,a subgroup of these subjects experience failure of spontaneous immunological and virological control. Here we determined the frequency of SP subjects who showed loss of HIV control within our Canadian Cohort of HIV(+) Slow Progressors and identified the proinflammatory cytokine IL-32 as a robust biomarker for control failure. Plasmatic levels of the proinflammatory isoforms of IL-32 (mainly β and γ) at earlier clinic visits positively correlated with the decline of CD4 T-cell counts,increased viral load,lower CD4/CD8 ratio and levels of inflammatory markers (sCD14 and IL-6) at later clinic visits. We present here a proof-of-concept for the use of IL-32 as a predictive biomarker for disease progression in SP subjects and identify IL-32 as a potential therapeutic target.
View Publication
Chemnitz JM et al. (JAN 2006)
Cancer research 66 2 1114--22
Prostaglandin E2 impairs CD4+ T cell activation by inhibition of lck: implications in Hodgkin's lymphoma.
Many tumors,including Hodgkin's lymphoma,are associated with decreased cellular immunity and elevated levels of prostaglandin E(2) (PGE(2)),a known inhibitor of CD4+ T cell activation,suggested to be involved in immune deviation in cancer. To address the molecular mechanisms tumor-derived PGE(2) might have on primary human CD4+ T cells,we used a whole genome-based transcriptional approach and show that PGE(2) severely limited changes of gene expression induced by signaling through the T cell receptor and CD28. This data suggests an interference of PGE(2) at an early step of T cell receptor signaling: indeed,PGE(2) stimulation of T cells leads to inactivation of lck and reduced phosphorylation of ZAP70. Antiapoptotic genes escaped PGE(2)-induced inhibition resulting in partial protection from apoptosis in response to irradiation or Fas-mediated signaling. As a functional consequence,PGE(2)-treated CD4+ T cells are arrested in the cell cycle associated with up-regulation of the cyclin/cyclin-dependent kinase inhibitor p27(kip1). Most importantly,CD4+ T cells in Hodgkin's lymphoma show similar regulation of genes that were altered in vitro by PGE(2) in T cells from healthy individuals. These data strongly suggest that PGE(2) is an important factor leading to CD4+ T cell impairment observed in Hodgkin's lymphoma.
View Publication
M. Carrino et al. ( 2019)
Cell death discovery 5 98
Prosurvival autophagy is regulated by protein kinase CK1 alpha in multiple myeloma.
Multiple myeloma (MM) is a tumor of plasma cells (PCs). Due to the intense immunoglobulin secretion,PCs are prone to endoplasmic reticulum stress and activate several stress-managing pathways,including autophagy. Indeed,autophagy deregulation is maladaptive for MM cells,resulting in cell death. CK1alpha,a pro-survival kinase in MM,has recently been involved as a regulator of the autophagic flux and of the transcriptional competence of the autophagy-related transcription factor FOXO3a in several cancers. In this study,we investigated the role of CK1alpha in autophagy in MM. To study the autophagic flux we generated clones of MM cell lines expressing the mCherry-eGFP-LC3B fusion protein. We observed that CK1 inhibition with the chemical ATP-competitive CK1 alpha/delta inhibitor D4476 resulted in an impaired autophagic flux,likely due to an alteration of lysosomes acidification. However,D4476 caused the accumulation of the transcription factor FOXO3a in the nucleus,and this was paralleled by the upregulation of mRNA coding for autophagic genes. Surprisingly,silencing of CK1alpha by RNA interference triggered the autophagic flux. However,FOXO3a did not shuttle into the nucleus and the transcription of autophagy-related FOXO3a-dependent genes was not observed. Thus,while the chemical inhibition with the dual CK1alpha/delta inhibitor D4476 induced cell death as a consequence of an accumulation of ineffective autophagic vesicles,on the opposite,CK1alpha silencing,although it also determined apoptosis,triggered a full activation of the early autophagic flux,which was then not supported by the upregulation of autophagic genes. Taken together,our results indicate that the family of CK1 kinases may profoundly influence MM cells survival also through the modulation of the autophagic pathway.
View Publication
Heinonen KM et al. (FEB 2006)
Proceedings of the National Academy of Sciences of the United States of America 103 8 2776--81
Protein tyrosine phosphatase 1B negatively regulates macrophage development through CSF-1 signaling.
Protein tyrosine phosphatase 1B (PTP-1B) is a ubiquitously expressed cytosolic phosphatase with the ability to dephosphorylate JAK2 and TYK2,and thereby down-regulate cytokine receptor signaling. Furthermore,PTP-1B levels are up-regulated in certain chronic myelogenous leukemia patients,which points to a potential role for PTP-1B in myeloid development. The results presented here show that the absence of PTP-1B affects murine myelopoiesis by modifying the ratio of monocytes to granulocytes in vivo. This bias toward monocytic development is at least in part due to a decreased threshold of response to CSF-1,because the PTP-1B -/- bone marrow presents no abnormalities at the granulocyte-monocyte progenitor level but produces significantly more monocytic colonies in the presence of CSF-1. This phenomenon is not due to an increase in receptor levels but rather to enhanced phosphorylation of the activation loop tyrosine. PTP-1B -/- cells display increased inflammatory activity in vitro and in vivo through the constitutive up-regulation of activation markers as well as increased sensitivity to endotoxin. Collectively,our data indicate that PTP-1B is an important modulator of myeloid differentiation and macrophage activation in vivo and provide a demonstration of a physiological role for PTP-1B in immune regulation.
View Publication
Okano S et al. (FEB 2011)
Journal of immunology (Baltimore,Md. : 1950) 186 3 1828--39
Provision of continuous maturation signaling to dendritic cells by RIG-I-stimulating cytosolic RNA synthesis of Sendai virus.
Dendritic cell (DC)-based immunotherapy has potential for treating infections and malignant tumors,but the functional capacity of DC must be assessed in detail,especially maturation and Ag-specific CTL priming. Recent reports suggest that DC that are provided with continuous maturation signals in vivo after transfer into patients are required to elicit the full DC functions. We demonstrate in this study that the rSendai virus vector (SeV) is a novel and ideal stimulant,providing DC with a continuous maturation signal via viral RNA synthesis in the cytosol,resulting in full maturation of monocyte-derived DC(s). Both RIG-I-dependent cytokine production and CD4 T cell responses to SeV-derived helper Ags are indispensable for overcoming regulatory T cell suppression to prime melanoma Ag recognized by T cell-1-specific CTL in the regulatory T cell abundant setting. DC stimulated via cytokine receptors,or TLRs,do not show these functional features. Therefore,SeV-infected DC have the potential for DC-directed immunotherapy.
View Publication
Hicar MD et al. (JUL 2010)
Journal of acquired immune deficiency syndromes (1999) 54 3 223--35
Pseudovirion particles bearing native HIV envelope trimers facilitate a novel method for generating human neutralizing monoclonal antibodies against HIV.
Monomeric HIV envelope vaccines fail to elicit broadly neutralizing antibodies or to protect against infection. Neutralizing antibodies against HIV bind to native functionally active Env trimers on the virion surface. Gag-Env pseudovirions recapitulate the native trimer and could serve as an effective epitope presentation platform for study of the neutralizing antibody response in HIV-infected individuals. To address if pseudovirions can recapitulate native HIV virion epitope structures,we carefully characterized these particles,concentrating on the antigenic structure of the coreceptor binding site. By blue native gel shift assays,Gag-Env pseudovirions were shown to contain native trimers that were competent for binding to neutralizing monoclonal antibodies. In enzyme-linked immunosorbent assay,pseudovirions exhibited increased binding of known CD4-induced antibodies after addition of CD4. Using flow cytometric analysis,fluorescently labeled pseudovirions specifically identified a subset of antigen-specific B cells in HIV-infected subjects. Interestingly,the sequence of one of these novel human antibodies,identified during cloning of single HIV-specific B cells and designated 2C6,exhibited homology to mAb 47e,a known anti-CD4-induced coreceptor binding site antibody. The secreted monoclonal antibody 2C6 did not bind monomeric gp120,but specifically bound envelope on pseudovirions. A recombinant form of the antibody 2C6 acted as a CD4-induced epitope-specific antibody in neutralization assays,yet did not bind monomeric gp120. These findings imply specificity against a quaternary epitope presented on the pseudovirion envelope spike. These data demonstrate that Gag-Env pseudovirions recapitulate CD4 and coreceptor binding pocket antigenic structures and can facilitate identification of B-cell clones that secrete neutralizing antibodies.
View Publication
Tinoco R et al. (MAY 2016)
Immunity 44 5 1190--203
PSGL-1 Is an Immune Checkpoint Regulator that Promotes T Cell Exhaustion.
Chronic viruses and cancers thwart immune responses in humans by inducing T cell dysfunction. Using a murine chronic virus that models human infections,we investigated the function of the adhesion molecule,P-selectin glycoprotein ligand-1 (PSGL-1),that is upregulated on responding T cells. PSGL-1-deficient mice cleared the virus due to increased intrinsic survival of multifunctional effector T cells that had downregulated PD-1 as well as other inhibitory receptors. Notably,this response resulted in CD4(+)-T-cell-dependent immunopathology. Mechanistically,PSGL-1 ligation on exhausted CD8(+) T cells inhibited T cell receptor (TCR) and interleukin-2 (IL-2) signaling and upregulated PD-1,leading to diminished survival with TCR stimulation. In models of melanoma cancer in which T cell dysfunction occurs,PSGL-1 deficiency led to PD-1 downregulation,improved T cell responses,and tumor control. Thus,PSGL-1 plays a fundamental role in balancing viral control and immunopathology and also functions to regulate T cell responses in the tumor microenvironment.
View Publication
Briercheck EL et al. ( 2015)
The Journal of Immunology 194 4 1832--1840
PTEN Is a Negative Regulator of NK Cell Cytolytic Function
Human NK cells are characterized by their ability to initiate an immediate and direct cytolytic response to virally infected or malignantly transformed cells. Within human peripheral blood,the more mature CD56(dim) NK cell efficiently kills malignant targets at rest,whereas the less mature CD56(bright) NK cells cannot. In this study,we show that resting CD56(bright) NK cells express significantly more phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein when compared with CD56(dim) NK cells. Consistent with this,forced overexpression of PTEN in NK cells resulted in decreased cytolytic activity,and loss of PTEN in CD56(bright) NK cells resulted in elevated cytolytic activity. Comparable studies in mice showed PTEN overexpression did not alter NK cell development or NK cell-activating and inhibitory receptor expression yet,as in humans,did decrease expression of downstream NK activation targets MAPK and AKT during early cytolysis of tumor target cells. Confocal microscopy revealed that PTEN overexpression disrupts the NK cell's ability to organize immunological synapse components including decreases in actin accumulation,polarization of the microtubule organizing center,and the convergence of cytolytic granules. In summary,our data suggest that PTEN normally works to limit the NK cell's PI3K/AKT and MAPK pathway activation and the consequent mobilization of cytolytic mediators toward the target cell and suggest that PTEN is among the active regulatory components prior to human NK cells transitioning from the noncytolytic CD56(bright) NK cell to the cytolytic CD56(dim) NK cells.
View Publication
Schlecht G et al. (MAR 2006)
International immunology 18 3 445--52
Purification of splenic dendritic cells induces maturation and capacity to stimulate Th1 response in vivo.
Dendritic cell (DC) maturation state is a key parameter for the issue of DC-T cell cognate interaction,which determines the outcome of T cell activation. Indeed,immature DCs induce tolerance while fully mature DCs generate immunity. Here we show that,in the absence of any deliberate activation signal,DCs freshly isolated from mouse spleen spontaneously produce IL-12 and tumor necrosis factor-alpha and up-regulate co-stimulation molecules,even when directly re-injected into their natural environment. Furthermore,after their isolation,these cells acquire the capacity to induce specific T(h)1 responses in vivo. These results demonstrate that the sole isolation of spleen DCs leads to the full maturation of these cells,which therefore cannot be considered as immature DCs. Moreover,we also show that the kinetics of DC activation do not influence the polarization of T(h) response in vivo challenging the idea that exhausted DCs induce preferentially T(h)2 response. Altogether,these observations should be taken into account in all experiments based on the transfer of ex vivo purified DCs.
View Publication