V. Lullo et al. (Jul 2024)
Frontiers in Immunology 15
A novel iPSC-based model of ICF syndrome subtype 2 recapitulates the molecular phenotype of ZBTB24 deficiency
Immunodeficiency,Centromeric instability and Facial anomalies (ICF) syndrome is a rare genetic disorder characterized by variable immunodeficiency. More than half of the affected individuals show mild to severe intellectual disability at early onset. This disorder is genetically heterogeneous and ZBTB24 is the causative gene of the subtype 2,accounting for about 30% of the ICF cases. ZBTB24 is a multifaceted transcription factor belonging to the Zinc-finger and BTB domain-containing protein family,which are key regulators of developmental processes. Aberrant DNA methylation is the main molecular hallmark of ICF syndrome. The functional link between ZBTB24 deficiency and DNA methylation errors is still elusive. Here,we generated a novel ICF2 disease model by deriving induced pluripotent stem cells (iPSCs) from peripheral CD34 + -blood cells of a patient homozygous for the p.Cys408Gly mutation,the most frequent missense mutation in ICF2 patients and which is associated with a broad clinical spectrum. The mutation affects a conserved cysteine of the ZBTB24 zinc-finger domain,perturbing its function as transcriptional activator. ICF2-iPSCs recapitulate the methylation defects associated with ZBTB24 deficiency,including centromeric hypomethylation. We validated that the mutated ZBTB24 protein loses its ability to directly activate expression of CDCA7 and other target genes in the patient-derived iPSCs. Upon hematopoietic differentiation,ICF2-iPSCs showed decreased vitality and a lower percentage of CD34 + /CD43 + /CD45 + progenitors. Overall,the ICF2-iPSC model is highly relevant to explore the role of ZBTB24 in DNA methylation homeostasis and provides a tool to investigate the early molecular events linking ZBTB24 deficiency to the ICF2 clinical phenotype.
View Publication
Greenwood-Goodwin M et al. ( 2016)
Scientific reports 6 24403
A novel lineage restricted, pericyte-like cell line isolated from human embryonic stem cells.
Pericytes (PCs) are endothelium-associated cells that play an important role in normal vascular function and maintenance. We developed a method comparable to GMP quality protocols for deriving self-renewing perivascular progenitors from the human embryonic stem cell (hESC),line ESI-017. We identified a highly scalable,perivascular progenitor cell line that we termed PC-A,which expressed surface markers common to mesenchymal stromal cells. PC-A cells were not osteogenic or adipogenic under standard differentiation conditions and showed minimal angiogenic support function in vitro. PC-A cells were capable of further differentiation to perivascular progenitors with limited differentiation capacity,having osteogenic potential (PC-O) or angiogenic support function (PC-M),while lacking adipogenic potential. Importantly,PC-M cells expressed surface markers associated with pericytes. Moreover,PC-M cells had pericyte-like functionality being capable of co-localizing with human umbilical vein endothelial cells (HUVECs) and enhancing tube stability up to 6 days in vitro. We have thus identified a self-renewing perivascular progenitor cell line that lacks osteogenic,adipogenic and angiogenic potential but is capable of differentiation toward progenitor cell lines with either osteogenic potential or pericyte-like angiogenic function. The hESC-derived perivascular progenitors described here have potential applications in vascular research,drug development and cell therapy.
View Publication
A novel myeloid-like NK cell progenitor in human umbilical cord blood.
Natural killer (NK) cell differentiation from pluripotent CD34(+) human hematopoietic stem cells or oligopotent lymphoid progenitors has already been reported. In the present study,long-term cultures of the CD56(-)/CD34(-) myeloid-like adherent cell fraction (ACF) from umbilical cord blood (UCB),characterized by the expression of CD14(+) as well as other myeloid markers,were set up with flt3 ligand (FL) and interleukin-15 (IL-15). The UCB/ACF gradually expressed the CD56 marker,which reached fairly high levels (approximately 90% of the cells were CD56(+)) by day 15. FL plus IL-15-driven ACF/CD56(+) cells progressively expressed a mature NK functional program lysing both NK- and lymphokine-activate killer (LAK)-sensitive tumor targets and producing high levels of interferon-gamma (IFN-gamma),granulocyte-macrophage colony-stimulating factor,tumor necrosis factor alpha,and IL-10 upon stimulation with IL-12 and IL-18. Similar results were obtained when highly purified CD14(+) cells from UCB were cultured with FL and IL-15. In contrast,UCB/CD34(+) cells cultured under the same conditions showed a delayed expression of CD56 and behaved functionally differently in that they exhibited NK but not LAK cytotoxicity and produced significantly fewer cytokines. Kinetic studies on the phenotype of UCB/ACF or UCB/CD14(+) cells cultured in the presence of FL and IL-15 showed a rapid decrease in CD14 expression after day 5,which reached levels of zero by day 20. Approximately 60% of the CD56(+) derived from the UCB/ACF or the UCB/CD14(+) cells coexpressed CD14 by day 5. Taken together,our data support the role of CD14(+) myeloid-like cells within UCB as a novel progenitor for lymphoid NK cells.
View Publication
Oved K et al. (FEB 2007)
Journal of immunology (Baltimore,Md. : 1950) 178 4 2307--17
A novel postpriming regulatory check point of effector/memory T cells dictated through antigen density threshold-dependent anergy.
CTLs act as the effector arm of the cell-mediated immune system to kill undesirable cells. Two processes regulate these effector cells to prevent self reactivity: a thymic selection process that eliminates autoreactive clones and a multistage activation or priming process that endows them with a license to kill cognate target cells. Hitherto no subsequent regulatory restrictions have been ascribed for properly primed and activated CTLs that are licensed to kill. In this study we show that CTLs possess a novel postpriming regulatory mechanism(s) that influences the outcome of their encounter with cognate target cells. This mechanism gauges the degree of Ag density,whereupon reaching a certain threshold significant changes occur that induce anergy in the effector T cells. The biological consequences of this Ag-induced postpriming control includes alterations in the expression of cell surface molecules that control immunological synapse activity and cytokine profiles and induce retarded cell proliferation. Most profound is genome-wide microarray analysis that demonstrates changes in the expression of genes related to membrane potential,TCR signal transduction,energy metabolism,and cell cycle control. Thus,a discernible and unique gene expression signature for anergy as a response to high Ag density has been observed. Consequently,activated T cells possess properties of a self-referential sensory organ. These studies identify a new postpriming control mechanism of CTL with anergenic-like properties. This mechanism extends our understanding of the control of immune function and regulation such as peripheral tolerance,viral infections,antitumor immune responses,hypersensitivity,and autoimmunity.
View Publication
Niwa A et al. (JAN 2011)
PLoS ONE 6 7 e22261
A novel Serum-Free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors
Elucidating the in vitro differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells is important for understanding both normal and pathological hematopoietic development in vivo. For this purpose,a robust and simple hematopoietic differentiation system that can faithfully trace in vivo hematopoiesis is necessary. In this study,we established a novel serum-free monolayer culture that can trace the in vivo hematopoietic pathway from ES/iPS cells to functional definitive blood cells via mesodermal progenitors. Stepwise tuning of exogenous cytokine cocktails induced the hematopoietic mesodermal progenitors via primitive streak cells. These progenitors were then differentiated into various cell lineages depending on the hematopoietic cytokines present. Moreover,single cell deposition assay revealed that common bipotential hemoangiogenic progenitors were induced in our culture. Our system provides a new,robust,and simple method for investigating the mechanisms of mesodermal and hematopoietic differentiation.
View Publication
Lee J et al. ( 2012)
Angewandte Chemie (International ed. in English) 51 50 12509--12513
A novel small molecule facilitates the reprogramming of human somatic cells into a pluripotent state and supports the maintenance of an undifferentiated state of human pluripotent stem cells.
Booster of pluripotency: RSC133,a new synthetic derivative of indoleacrylic acid/indolepropionic acid,exhibits dual activity by inhibiting histone deacetylase and DNA methyltransferase. Furthermore it potently improves the reprogramming of human somatic cells into a pluripotent state and aids the growth and maintenance of human pluripotent stem cells (hPSCs).
View Publication
Hochwald SN et al. ( 2009)
Cell cycle (Georgetown,Tex.) 8 15 2435--2443
A novel small molecule inhibitor of FAK decreases growth of human pancreatic cancer.
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is overexpressed in many types of tumors,including pancreatic cancer,and plays an important role in cell adhesion and survival signaling. Pancreatic cancer is a lethal disease and is very resistant to chemotherapy,and FAK has been shown recently to assist in tumor cell survival. Therefore,FAK is an excellent potential target for anti-cancer therapy. We identified a novel small molecule inhibitor (1,2,4,5-Benzenetetraamine tetrahydrochloride,that we called Y15) targeting the main autophosphorylation site of FAK and hypothesized that it would be an effective treatment strategy against human pancreatic cancer. Y15 specifically blocked phosphorylation of Y397-FAK and total phosphorylation of FAK. It directly inhibited FAK autophosphorylation in a dose- and time-dependent manner. Furthermore,Y15 increased pancreatic cancer cell detachment and inhibited cell adhesion in a dose-dependent manner. Y15 effectively caused human pancreatic tumor regression in vivo,when administered alone and its effects were synergistic with gemcitabine chemotherapy. This was accompanied by a decrease in Y397-phosphorylation of FAK in the tumors treated with Y15. Thus,targeting the Y397 site of FAK in pancreatic cancer with the small molecule inhibitor,1,2,4,5-Benzenetetraamine tetrahydrochloride,is a potentially effective treatment strategy in this deadly disease.
View Publication
L. D. Volpe et al. (Nov 2024)
Cell Reports Medicine 5 11
A p38 MAPK-ROS axis fuels proliferation stress and DNA damage during CRISPR-Cas9 gene editing in hematopoietic stem and progenitor cells
Ex vivo activation is a prerequisite to reaching adequate levels of gene editing by homology-directed repair (HDR) for hematopoietic stem and progenitor cell (HSPC)-based clinical applications. Here,we show that shortening culture time mitigates the p53-mediated DNA damage response to CRISPR-Cas9-induced DNA double-strand breaks,enhancing the reconstitution capacity of edited HSPCs. However,this results in lower HDR efficiency,rendering ex vivo culture necessary yet detrimental. Mechanistically,ex vivo activation triggers a multi-step process initiated by p38 mitogen-activated protein kinase (MAPK) phosphorylation,which generates mitogenic reactive oxygen species (ROS),promoting fast cell-cycle progression and subsequent proliferation-induced DNA damage. Thus,p38 inhibition before gene editing delays G1/S transition and expands transcriptionally defined HSCs,ultimately endowing edited cells with superior multi-lineage differentiation,persistence throughout serial transplantation,enhanced polyclonal repertoire,and better-preserved genome integrity. Our data identify proliferative stress as a driver of HSPC dysfunction with fundamental implications for designing more effective and safer gene correction strategies for clinical applications.
View Publication
Hessel A et al. (AUG 2010)
PloS one 5 8 e12217
A pandemic influenza H1N1 live vaccine based on modified vaccinia Ankara is highly immunogenic and protects mice in active and passive immunizations.
BACKGROUND The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus,and to show protection in a lethal animal challenge model. METHODOLOGY/PRINCIPAL FINDINGS For this purpose,the hemagglutinin (HA) and neuraminidase (NA) genes of the influenza A/California/07/2009 (H1N1) strain (CA/07) were inserted into the replication-deficient modified vaccinia Ankara (MVA) virus--a safe poxviral live vector--resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines,together with an inactivated whole virus vaccine,were assessed in a lung infection model using immune competent Balb/c mice,and in a lethal challenge model using severe combined immunodeficient (SCID) mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain,while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-gamma-secreting (IFN-gamma) CD4- and CD8 T-cells in lungs and spleens. In the lungs,a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus,which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition,passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus. CONCLUSIONS/SIGNIFICANCE The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for pandemic influenza.
View Publication
S. Sali et al. (Mar 2025)
Stem Cell Research & Therapy 16 7
A perfect islet: reviewing recent protocol developments and proposing strategies for stem cell derived functional pancreatic islets
The search for an effective cell replacement therapy for diabetes has driven the development of “perfect” pancreatic islets from human pluripotent stem cells (hPSCs). These hPSC-derived pancreatic islet-like β cells can overcome the limitations for disease modelling,drug development and transplantation therapies in diabetes. Nevertheless,challenges remain in generating fully functional and mature β cells from hPSCs. This review underscores the significant efforts made by researchers to optimize various differentiation protocols aimed at enhancing the efficiency and quality of hPSC-derived pancreatic islets and proposes methods for their improvement. By emulating the natural developmental processes of pancreatic embryogenesis,specific growth factors,signaling molecules and culture conditions are employed to guide hPSCs towards the formation of mature β cells capable of secreting insulin in response to glucose. However,the efficiency of these protocols varies greatly among different human embryonic stem cell (hESC) and induced pluripotent stem cell (hiPSC) lines. This variability poses a particular challenge for generating patient-specific β cells. Despite recent advancements,the ultimate goal remains to develop a highly efficient directed differentiation protocol that is applicable across all genetic backgrounds of hPSCs. Although progress has been made,further research is required to optimize the protocols and characterization methods that could ensure the safety and efficacy of hPSC-derived pancreatic islets before they can be utilized in clinical settings.
View Publication