Vlahos CJ et al. (FEB 1994)
The Journal of biological chemistry 269 7 5241--8
A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002).
Phosphatidylinositol (PtdIns) 3-kinase is an enzyme implicated in growth factor signal transduction by associating with receptor and nonreceptor tyrosine kinases,including the platelet-derived growth factor receptor. Inhibitors of PtdIns 3-kinase could potentially give a better understanding of the function and regulatory mechanisms of the enzyme. Quercetin,a naturally occurring bioflavinoid,was previously shown to inhibit PtdIns 3-kinase with an IC50 of 1.3 microgram/ml (3.8 microM); inhibition appeared to be directed at the ATP-binding site of the kinase. Analogs of quercetin were investigated as PtdIns 3-kinase inhibitors,with the most potent ones exhibiting IC50 values in the range of 1.7-8.4 micrograms/ml. In contrast,genistein,a potent tyrosine kinase inhibitor of the isoflavone class,did not inhibit PtdIns 3-kinase significantly (IC50 textgreater 30 micrograms/ml). Since quercetin has also been shown to inhibit other PtdIns and protein kinases,other chromones were evaluated as inhibitors of PtdIns 3-kinase without affecting PtdIns 4-kinase or selected protein kinases. One such compound,2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (also known as 2-(4-morpholinyl)-8-phenylchromone,LY294002),completely and specifically abolished PtdIns 3-kinase activity (IC50 = 0.43 microgram/ml; 1.40 microM) but did not inhibit PtdIns 4-kinase or tested protein and lipid kinases. Analogs of LY294002 demonstrated a very selective structure-activity relationship,with slight changes in structure causing marked decreases in inhibition. LY294002 was shown to completely abolish PtdIns 3-kinase activity in fMet-Leu-Phe-stimulated human neutrophils,as well as inhibit proliferation of smooth muscle cells in cultured rabbit aortic segments. Since PtdIns 3-kinase appears to be centrally involved with growth factor signal transduction,the development of specific inhibitors against the kinase may be beneficial in the treatment of proliferative diseases as well as in elucidating the biological role of the kinase in cellular proliferation and growth factor response.
View Publication
Seo J-H et al. (SEP 2010)
Cancer research 70 18 7325--35
A specific need for CRKL in p210BCR-ABL-induced transformation of mouse hematopoietic progenitors.
CRKL (CRK-like) is an adapter protein predominantly phosphorylated in cells that express the tyrosine kinase p210(BCR-ABL),the fusion product of a (9;22) chromosomal translocation causative for chronic myeloid leukemia. It has been unclear,however,whether CRKL plays a functional role in p210(BCR-ABL) transformation. Here,we show that CRKL is required for p210(BCR-ABL) to support interleukin-3-independent growth of myeloid progenitor cells and long-term outgrowth of B-lymphoid cells from fetal liver-derived hematopoietic progenitor cells. Furthermore,a synthetic phosphotyrosyl peptide that binds to the CRKL SH2 domain with high affinity blocks association of endogenous CRKL with the p210(BCR-ABL) complex and reduces c-MYC levels in K562 human leukemic cells as well as in mouse hematopoietic cells transformed by p210(BCR-ABL) or the imatinib-resistant mutant T315I. These results indicate that the function of CRKL as an adapter protein is essential for p210(BCR-ABL)-induced transformation.
View Publication
Onuma Y et al. (APR 2015)
PLoS One 10 4 e0118931
A stable chimeric fibroblast growth factor (FGF) can successfully replace basic FGF in human pluripotent stem cell culture
Fibroblast growth factors (FGFs) are essential for maintaining self-renewal in human embryonic stem cells and induced pluripotent stem cells. Recombinant basic FGF (bFGF or FGF2) is conventionally used to culture pluripotent stem cells; however,because of the instability of bFGF,repeated addition of fresh bFGF into the culture medium is required in order to maintain its concentration. In this study,we demonstrate that a heat-stable chimeric variant of FGF,termed FGFC,can be successfully used for maintaining human pluripotent stem cells. FGFC is a chimeric protein composed of human FGF1 and FGF2 domains that exhibits higher thermal stability and protease resistance than do both FGF1 and FGF2. Both human embryonic stem cells and induced pluripotent stem cells were maintained in ordinary culture medium containing FGFC instead of FGF2. Comparison of cells grown in FGFC with those grown in conventional FGF2 media showed no significant differences in terms of the expression of pluripotency markers,global gene expression,karyotype,or differentiation potential in the three germ lineages. We therefore propose that FGFC may be an effective alternative to FGF2,for maintenance of human pluripotent stem cells.
View Publication
Johnson K et al. (MAY 2012)
Science 336 6082 717--21
A stem cell-based approach to cartilage repair.
Osteoarthritis (OA) is a degenerative joint disease that involves the destruction of articular cartilage and eventually leads to disability. Molecules that promote the selective differentiation of multipotent mesenchymal stem cells (MSCs) into chondrocytes may stimulate the repair of damaged cartilage. Using an image-based high-throughput screen,we identified the small molecule kartogenin,which promotes chondrocyte differentiation (median effective concentration = 100 nM),shows chondroprotective effects in vitro,and is efficacious in two OA animal models. Kartogenin binds filamin A,disrupts its interaction with the transcription factor core-binding factor β subunit (CBFβ),and induces chondrogenesis by regulating the CBFβ-RUNX1 transcriptional program. This work provides new insights into the control of chondrogenesis that may ultimately lead to a stem cell-based therapy for osteoarthritis.
View Publication
A. Bentley-DeSousa et al. (Jan 2025)
The Journal of Cell Biology 224 2
A STING–CASM–GABARAP pathway activates LRRK2 at lysosomes
LRRK2 is a kinase whose activity is linked to Parkinson’s disease. This study identifies a pathway that links LRRK2 activation to lysosome perturbations. This pathway involves the process known as CASM and culminates in an interaction between LRRK2 and GABARAP at the surface of lysosomes.
View Publication
Bartek J et al. (APR 1985)
Journal of cell science 75 17--33
A subclass of luminal epithelial cells in the human mammary gland, defined by antibodies to cytokeratins.
Two monoclonal antibodies,BA16 and BA17,have been developed using a detergent-insoluble extract of human mammary epithelial organoids as immunogen. Indirect immunofluorescent staining of cultured cells showed that the component reacting with the antibodies was filamentous and the intensity of staining was stronger in mitotic cells. Immunoblotting of cell extracts showed that both antibodies react with only one band of 40 X 10(3) molecular weight,which was present in keratin-enriched extracts of cells or organoids. Furthermore,the tissue distribution of the component reacting with the antibodies was that predicted for human keratin 19. The antibodies showed differences in the intensity of staining of cells or tissue sections fixed and prepared in different ways indicating that they reacted with different epitopes. The pattern of expression of the 40 X 10(3) Mr keratin by normal mammary epithelial cells was investigated by immunoperoxidase staining of tissue sections,cultured milk cells,and organoids of different sizes cultured in collagen gels. It was found that basal or myoepithelial cells did not express this keratin. Some heterogeneity of expression of this component was seen in luminal epithelial cells,found almost exclusively in the smaller structures. These cells did,however,express other keratins characteristic of luminal cells. The distribution in the mammary tree of the luminal cells that did not express the 40 X 10(3) Mr keratin appears to be similar to that expected for cells with the proliferative potential to produce new terminal ductal lobular units or an increase in branching of existing terminal ductal lobular units. It is shown that these cells have considerable proliferative potential by the fact that they form large colonies in milk cell cultures.
View Publication
Dudley DT et al. (AUG 1995)
Proceedings of the National Academy of Sciences of the United States of America 92 17 7686--9
A synthetic inhibitor of the mitogen-activated protein kinase cascade.
Treatment of cells with a variety of growth factors triggers a phosphorylation cascade that leads to activation of mitogen-activated protein kinases (MAPKs,also called extracellular signal-regulated kinases,or ERKs). We have identified a synthetic inhibitor of the MAPK pathway. PD 098059 [2-(2'-amino-3'-methoxyphenyl)-oxanaphthalen-4-one] selectively inhibited the MAPK-activating enzyme,MAPK/ERK kinase (MEK),without significant inhibitory activity of MAPK itself. Inhibition of MEK by PD 098059 prevented activation of MAPK and subsequent phosphorylation of MAPK substrates both in vitro and in intact cells. Moreover,PD 098059 inhibited stimulation of cell growth and reversed the phenotype of ras-transformed BALB 3T3 mouse fibroblasts and rat kidney cells. These results indicate that the MAPK pathway is essential for growth and maintenance of the ras-transformed phenotype. Further,PD 098059 is an invaluable tool that will help elucidate the role of the MAPK cascade in a variety of biological settings.
View Publication
Lin P-Y et al. (NOV 2013)
Stem cells and development 23 4 372--379
A synthetic peptide-acrylate surface for production of insulin-producing cells from human embryonic stem cells.
Human embryonic stem cells (hESCs),due to their self-renewal capacity and pluripotency,have become a potential source of transplantable $\$-cells for the treatment of diabetes. However,it is imperative that the derived cells fulfill the criteria for clinical treatment. In this study,we replaced common Matrigel with a synthetic peptide-acrylate surface (Synthemax) to expand undifferentiated hESCs and direct their differentiation in a defined and serum-free medium. We confirmed that the cells still expressed pluripotent markers,had the ability to differentiate into three germ layers,and maintained a normal karyotype after 10 passages of subculture. Next,we reported an efficient protocol for deriving nearly 86% definitive endoderm cells from hESCs under serum-free conditions. Moreover,we were able to obtain insulin-producing cells within 21 days following a simple three-step protocol. The results of immunocytochemical and quantitative gene expression analysis showed that the efficiency of induction was not significantly different between the Synthemax surface and the Matrigel-coated surface. Thus,we provided a totally defined condition from hESC culture to insulin-producing cell differentiation,and the derived cells could be a therapeutic resource for diabetic patients in the future.
View Publication
Liu Y et al. (NOV 2011)
Biomaterials 32 32 8058--66
A synthetic substrate to support early mesodermal differentiation of human embryonic stem cells.
Our ability to guide differentiation of human pluripotent stem cells (hPSCs) toward desired lineages efficiently and reproducibly in xeno-free conditions is the key to advancing hPSC technology from the laboratory to clinical use. Here we report an engineered biomimetic substrate functionalized with both peptide ligands for α5β1 and α6β1 integrins to support efficient early mesodermal differentiation of human embryonic stem cells (hESCs) when cultured in a differentiation medium containing BMP4. In contrast,mesodermal differentiation is not induced on substrates functionalized with either ligand alone even though the culture medium is identical. Mesodermal differentiation was characterized by immunofluorescent staining,flow cytometric analysis,and RT-PCR analysis of early mesodermal markers Brachyury,Mixl1,and Wnt3. The early mesodermal progenitors derived on the substrate functionalized with both integrin ligands have the normal developmental potential to further differentiate along the hemato-endothelial and cardiac lineages. Immobilized ligands for α5β1 and α6β1 integrins both are permissive,necessary,and sufficient insoluble ligands in this engineered system to support early mesodermal differentiation of hESCs. This synthetic substrate,in conjunction with defined soluble factors,constructs a well-controlled and xeno-free early mesodermal differentiation niche that offers advantages over the previously reported niche constructed with the Matrigel-coated substrate.
View Publication
Jin S et al. ( 2012)
PLoS ONE 7 11 e50880
A synthetic, xeno-free peptide surface for expansion and directed differentiation of human induced pluripotent stem cells.
Human induced pluripotent stem cells have the potential to become an unlimited cell source for cell replacement therapy. The realization of this potential,however,depends on the availability of culture methods that are robust,scalable,and use chemically defined materials. Despite significant advances in hiPSC technologies,the expansion of hiPSCs relies upon the use of animal-derived extracellular matrix extracts,such as Matrigel,which raises safety concerns over the use of these products. In this work,we investigated the feasibility of expanding and differentiating hiPSCs on a chemically defined,xeno-free synthetic peptide substrate,i.e. Corning Synthemax(®) Surface. We demonstrated that the Synthemax Surface supports the attachment,spreading,and proliferation of hiPSCs,as well as hiPSCs' lineage-specific differentiation. hiPSCs colonies grown on Synthemax Surfaces exhibit less spread and more compact morphology compared to cells grown on Matrigel™. The cytoskeleton characterization of hiPSCs grown on the Synthemax Surface revealed formation of denser actin filaments in the cell-cell interface. The down-regulation of vinculin and up-regulation of zyxin expression were also observed in hiPSCs grown on the Synthemax Surface. Further examination of cell-ECM interaction revealed that hiPSCs grown on the Synthemax Surface primarily utilize α(v)β(5) integrins to mediate attachment to the substrate,whereas multiple integrins are involved in cell attachment to Matrigel. Finally,hiPSCs can be maintained undifferentiated on the Synthemax Surface for more than ten passages. These studies provide a novel approach for expansion of hiPSCs using synthetic peptide engineered surface as a substrate to avoid a potential risk of contamination and lot-to-lot variability with animal derived materials.
View Publication
Stern P et al. (SEP 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 37 13895--900
A system for Cre-regulated RNA interference in vivo.
We report a system for Cre-regulated expression of RNA interference in vivo. Expression cassettes comprise selectable and FACS-sortable markers in tandem with additional marker genes and shRNAs in the antisense orientation. The cassettes are flanked by tandem LoxP sites arranged so that Cre expression inverts the marker-shRNA construct,allowing its regulated expression (and,at the same time,deletes the original selection/marker genes). The cassettes can be incorporated into retroviral or lentiviral vectors and delivered to cells in culture or used to generate transgenic mice. We describe cassettes incorporating various combinations of reporter genes,miRNA-based RNAi (including two shRNA constructs at once),and oncogenes and demonstrate the delivery of effective RNA interference in cells in culture,efficient transduction into hematopoietic stem cells with cell-type-specific knockdown in their progeny,and rapid generation of regulated shRNA knockdown in transgenic mice. These vector systems allow regulated combinatorial manipulation (both overexpression and loss of function) of gene expression in multiple systems in vitro and in vivo.
View Publication