Scientific Resources
-
文献S. Bezstarosti et al. ( 2021) Frontiers in immunology 12 761893
HLA-DQ-Specific Recombinant Human Monoclonal Antibodies Allow for In-Depth Analysis of HLA-DQ Epitopes.
HLA-DQ donor-specific antibodies (DSA) are the most prevalent type of DSA after renal transplantation and have been associated with eplet mismatches between donor and recipient HLA. Eplets are theoretically defined configurations of surface exposed amino acids on HLA molecules that require verification to confirm that they can be recognized by alloantibodies and are therefore clinically relevant. In this study,we isolated HLA-DQ specific memory B cells from immunized individuals by using biotinylated HLA-DQ monomers to generate 15 recombinant human HLA-DQ specific monoclonal antibodies (mAb) with six distinct specificities. Single antigen bead reactivity patterns were analyzed with HLA-EMMA to identify amino acids that were uniquely shared by the reactive HLA alleles to define functional epitopes which were mapped to known eplets. The HLA-DQB1*03:01-specific mAb LB_DQB0301_A and the HLA-DQB1*03-specific mAb LB_DQB0303_C supported the antibody-verification of eplets 45EV and 55PP respectively,while mAbs LB_DQB0402_A and LB_DQB0602_B verified eplet 55R on HLA-DQB1*04/05/06. For three mAbs,multiple uniquely shared amino acid configurations were identified,warranting further studies to define the inducing functional epitope and corresponding eplet. Our unique set of HLA-DQ specific mAbs will be further expanded and will facilitate the in-depth analysis of HLA-DQ epitopes,which is relevant for further studies of HLA-DQ alloantibody pathogenicity in transplantation. View Publication -
文献R. Sun et al. (jan 2022) Scientific reports 12 1 685
Dysfunction of low-density neutrophils in peripheral circulation in patients with sepsis.
Low-density neutrophils (LDNs) have been described in tumors and various autoimmune diseases,where they exhibit immune dysfunction and alter disease progression. Nevertheless,LDNs have been rarely reported in sepsis. We studied sepsis patients admitted to the intensive care unit. Wright-Giemsa stain assay and Transmission electron microscopy were performed to detect the morphology of neutrophils. Flow cytometry was used to analyze the number and function of LDNs. Concentration of cytokines was measured using ELISA. Neutrophil chemotaxis was examined using an under-agarose chemotaxis model. We found that LDNs were significantly elevated in patients with sepsis. Phenotypes and morphological characteristics suggest that LDNs may be formed by mixtures of neutrophils at various maturation stages. In vitro experiments showed that LDN formation was closely associated with neutrophil degranulation. We preliminarily discussed changes in immune function in LDNs. Compared with high-density neutrophils,expression levels of CXC chemokine receptor 4 on LDN surfaces were increased,phagocytotic capacity was decreased,and life span was prolonged. The chemotactic ability of LDNs was significantly reduced,possibly related to the increased expression of P2X1. These data suggest that LDNs are essential components of neutrophils in sepsis. To clarify the source and dysfunction mechanism of LDN in sepsis may be helpful for the diagnosis and treatment of sepsis in the future. View Publication -
文献T. W. Braun et al. (mar 2022) STAR protocols 3 1 101070
FACS and immunomagnetic isolation of early erythroid progenitor cells from mouse fetal liver.
Early erythroid progenitors are transit-amplifying cells with high proliferative capacity committed to undergoing red cell differentiation. CD71/CD24low progenitors are less mature and have greater proliferative capacity than CD71/CD24high. We present protocols for isolation of CD71/CD24low progenitors from mouse fetal liver using both fluorescence-activated cell sorting (FACS) and immunomagnetic enrichment. CD71/CD24low progenitors isolated with both approaches show similar transcriptomes at single-cell resolution and exhibit characteristic proliferative responses to glucocorticoids. For complete details on the use and execution of this protocol,please refer to Li et al. (2019). View Publication -
文献Y. Tokumoto et al. (jan 2022) Clinical and experimental immunology 207 1 95--103
Induction of memory-like CD8+ T cells and CD4+ T cells from human naive T cells in culture.
Memory T cells are crucial players in vertebrate adaptive immunity but their development is incompletely understood. Here,we describe a method to produce human memory-like T cells from naive human T cells in culture. Using commercially available human T-cell differentiation kits,both purified naive CD8+ T cells and purified naive CD4+ T cells were activated via T-cell receptor signaling and appropriate cytokines for several days in culture. All the T-cell activators were then removed from the medium and the cultures were continued in hypoxic condition (1% O2 atmosphere) for several more days; during this period,most of the cells died,but some survived in a quiescent state for a month. The survivors had small round cell bodies,expressed differentiation markers characteristic of memory T cells and restarted proliferation when the T-cell activators were added back. We could also induce memory-like T cells from naive human T cells without hypoxia,if we froze the activated T cells or prepared the naive T cells from chilled filter buffy coats. View Publication -
文献A. S. Smith et al. (jan 2022) Journal for immunotherapy of cancer 10 1
B cells imprint adoptively transferred CD8+ T cells with enhanced tumor immunity.
BACKGROUND Adoptive T cell transfer (ACT) therapy improves outcomes in patients with advanced malignancies,yet many individuals relapse due to the infusion of T cells with poor function or persistence. Toll-like receptor (TLR) agonists can invigorate antitumor T cell responses when administered directly to patients,but these responses often coincide with toxicities. We posited that TLR agonists could be repurposed ex vivo to condition T cells with remarkable potency in vivo,circumventing TLR-related toxicity. METHODS In this study we investigated how tumor-specific murine CD8+ T cells and human tumor infiltrating lymphocytes (TILs) are impacted when expanded ex vivo with the TLR9 agonist CpG. RESULTS Herein we reveal a new way to reverse the tolerant state of adoptively transferred CD8+ T cells against tumors using TLR-activated B cells. We repurposed the TLR9 agonist,CpG,commonly used in the clinic,to bolster T cell-B cell interactions during expansion for ACT. T cells expanded ex vivo from a CpG-treated culture demonstrated potent antitumor efficacy and prolonged persistence in vivo. This antitumor efficacy was accomplished without in vivo administration of TLR agonists or other adjuvants of high-dose interleukin (IL)-2 or vaccination,which are classically required for effective ACT therapy. CpG-conditioned CD8+ T cells acquired a unique proteomic signature hallmarked by an IL-2R$\alpha$highICOShighCD39low phenotype and an altered metabolic profile,all reliant on B cells transiently present in the culture. Likewise,human TILs benefitted from expansion with CpG ex vivo,as they also possessed the IL-2R$\alpha$highICOShighCD39low phenotype. CpG fostered the expansion of potent CD8+ T cells with the signature phenotype and antitumor ability via empowering a direct B-T cell interaction. Isolated B cells also imparted T cells with the CpG-associated phenotype and improved tumor immunity without the aid of additional antigen-presenting cells or other immune cells in the culture. CONCLUSIONS Our results demonstrate a novel way to use TLR agonists to improve immunotherapy and reveal a vital role for B cells in the generation of potent CD8+ T cell-based therapies. Our findings have immediate implications in the clinical treatment of advanced solid tumors. View Publication -
文献E. Xu et al. (jan 2022) Molecular neurodegeneration 17 1 7
Pathological $\alpha$-synuclein recruits LRRK2 expressing pro-inflammatory monocytes to the brain.
BACKGROUND Leucine rich repeat kinase 2 (LRRK2) and SNCA are genetically linked to late-onset Parkinson's disease (PD). Aggregated $\alpha$-synuclein pathologically defines PD. Recent studies identified elevated LRRK2 expression in pro-inflammatory CD16+ monocytes in idiopathic PD,as well as increased phosphorylation of the LRRK2 kinase substrate Rab10 in monocytes in some LRRK2 mutation carriers. Brain-engrafting pro-inflammatory monocytes have been implicated in dopaminergic neurodegeneration in PD models. Here we examine how $\alpha$-synuclein and LRRK2 interact in monocytes and subsequent neuroinflammatory responses. METHODS Human and mouse monocytes were differentiated to distinct transcriptional states resembling macrophages,dendritic cells,or microglia,and exposed to well-characterized human or mouse $\alpha$-synuclein fibrils. LRRK2 expression and LRRK2-dependent Rab10 phosphorylation were measured with monoclonal antibodies,and myeloid cell responses to $\alpha$-synuclein fibrils in R1441C-Lrrk2 knock-in mice or G2019S-Lrrk2 BAC mice were evaluated by flow cytometry. Chemotaxis assays were performed with monocyte-derived macrophages stimulated with $\alpha$-synuclein fibrils and microglia in Boyden chambers. RESULTS $\alpha$-synuclein fibrils robustly stimulate LRRK2 and Rab10 phosphorylation in human and mouse macrophages and dendritic-like cells. In these cells,$\alpha$-synuclein fibrils stimulate LRRK2 through JAK-STAT activation and intrinsic LRRK2 kinase activity in a feed-forward pathway that upregulates phosphorylated Rab10. In contrast,LRRK2 expression and Rab10 phosphorylation are both suppressed in microglia-like cells that are otherwise highly responsive to $\alpha$-synuclein fibrils. Corroborating these results,LRRK2 expression in the brain parenchyma occurs in pro-inflammatory monocytes infiltrating from the periphery,distinct from brain-resident microglia. Mice expressing pathogenic LRRK2 mutations G2019S or R1441C have increased numbers of infiltrating pro-inflammatory monocytes in acute response to $\alpha$-synuclein fibrils. In primary cultured macrophages,LRRK2 kinase inhibition dampens $\alpha$-synuclein fibril and microglia-stimulated chemotaxis. CONCLUSIONS Pathologic $\alpha$-synuclein activates LRRK2 expression and kinase activity in monocytes and induces their recruitment to the brain. These results predict that LRRK2 kinase inhibition may attenuate damaging pro-inflammatory monocyte responses in the brain. View Publication -
文献M. Kono et al. ( 2022) Oncoimmunology 11 1 2021619
Immunomodulation via FGFR inhibition augments FGFR1 targeting T-cell based antitumor immunotherapy for head and neck squamous cell carcinoma.
Fibroblast growth factor receptor 1 (FGFR1) is overexpressed in multiple types of solid tumors,including head and neck squamous cell carcinoma (HNSCC). Being associated with poor prognosis,FGFR1 is a potential therapeutic target for aggressive tumors. T cell-based cancer immunotherapy has played a central role in novel cancer treatments. However,the potential of antitumor immunotherapy targeting FGFR1 has not been investigated. Here,we showed that FGFR-tyrosine kinase inhibitors (TKIs) augmented antitumor effects of immune checkpoint inhibitors in an HNSCC mouse model and upregulated tumoral MHC class I and MHC class II expression in vivo and in vitro. This upregulation was associated with the mitogen-activated protein kinase signaling pathway,which is a crucial pathway for cancer development through FGFR signaling. Moreover,we identified an FGFR1-derived peptide epitope (FGFR1305-319) that could elicit antigen-reactive and multiple HLA-restricted CD4+ T cell responses. These T cells showed direct cytotoxicity against tumor cells that expressed FGFR1. Notably,FGFR-TKIs augmented antitumor effects of FGFR1-reactive T cells against human HNSCC cells. These results indicate that the combination of FGFR-TKIs with immunotherapy,such as an FGFR1-targeting peptide vaccine or immune checkpoint inhibitor,could be a novel and robust immunologic approach for treating patients with FGFR1-expressing cancer cells. View Publication -
文献Y. Xia et al. ( 2021) Frontiers in pharmacology 12 746786
Yi Shen Juan Bi Pill Regulates the Bone Immune Microenvironment via the JAK2/STAT3 Signaling Pathway in Vitro.
Rheumatoid arthritis (RA) is characterized by an impaired articular bone immune microenvironment,which is associated with regulatory T cells (Tregs) hypofunction and osteoclasts (OCs) hyperfunction and leads to articular bone erosion and systemic bone loss. Studies have shown that Tregs slow bone loss in RA by regulating the bone resorption function of OCs and the JAK/STAT signaling pathway can regulate the immunosuppressive function of Tregs and reduce the bone erosion function of OCs. Yi Shen Juan Bi Pill (YSJB) is a classic Chinese herbal compound for the treatment of RA. However,whether YSJB regulates bone immune microenvironment homeostasis through JAK/STAT signaling pathway remains unclear. Based on in vitro OC single culture,Treg single culture and OC-Treg coculture systems,treatments were performed using drug-containing serum,AG490 and JAK2 siRNA to explore whether YSJB-containing serum regulates the homeostasis of the bone immune microenvironment through the JAK/STAT signaling pathway. In vitro,YSJB treatment decreased the number of TRAP+ cells and the areas of bone resorption and inhibited the expression of RANK,NFATc1,c-fos,JAK2,and STAT3 in both the OC single culture system and the OC-Treg coculture system. Tregs further reduced the number of TRAP+ cells and the areas of bone resorption in the coculture system. YSJB promoted the secretion of IL-10 while inhibiting the expression of JAK2 and STAT3 in Tregs. Moreover,inhibiting the expression of JAK2 with the JAK2 inhibitor AG490 and JAK2 siRNA improved the immunosuppressive functions of Treg,inhibited OC differentiation and bone resorption. Our study demonstrates that YSJB can regulate OC-mediated bone resorption and Treg-mediated bone immunity through the JAK2/STAT3 signaling pathway. This study provides a new strategy for regulating the bone immune microenvironment in RA with traditional Chinese medicine. View Publication -
文献T. P. Buters et al. (apr 2022) Clinical pharmacology and therapeutics 111 4 964--971
Clinical, Cellular, and Molecular Effects of Corticosteroids on the Response to Intradermal Lipopolysaccharide Administration in Healthy Volunteers.
The intradermal lipopolysaccharide (LPS) challenge in healthy volunteers has proven to be a valuable tool to study local inflammation in vivo. In the current study the inhibitory effects of oral and topical corticosteroid treatment on intradermal LPS responses were evaluated to benchmark the challenge for future investigational drugs. Twenty-four healthy male volunteers received a two-and-a-half-day twice daily (b.i.d.) pretreatment with topical clobetasol propionate 0.05% and six healthy volunteers received a two-and-a-half-day b.i.d. pretreatment with oral prednisolone at 0.25 mg/kg body weight per administration. Participants received one injection regimen of either 0,2,or 4 intradermal LPS injections (5 ng LPS in 50 µL 0.9% sodium chloride solution). The LPS response was evaluated by noninvasive (perfusion,skin temperature,and erythema) and invasive assessments (cellular and cytokine responses) in suction blister exudate. Both corticosteroids significantly suppressed the clinical inflammatory response (erythema P = 0.0001 for clobetasol and P = 0.0016 for prednisolone; heat P = 0.0245 for clobetasol,perfusion P < 0.0001 for clobetasol and P = 0.0036 for prednisolone). Clobetasol also significantly reduced the number of monocytes subsets,dendritic cells,natural killer cells,and T cells in blister exudate. A similar effect was observed for prednisolone. No relevant corticosteroid effects were observed on the cytokine response to LPS. We successfully demonstrated that the anti-inflammatory effects of corticosteroids can be detected using our intradermal LPS challenge model,validating it for evaluation of future investigational drugs,as an initial assessment of the anti-inflammatory effects of such compounds in a minimally invasive manner. View Publication -
文献F. Shahneh et al. (feb 2022) Arteriosclerosis,thrombosis,and vascular biology 42 2 145--155
Inflammatory Monocyte Counts Determine Venous Blood Clot Formation and Resolution.
BACKGROUND Monocytes are thought to be involved in venous thrombosis but the role of individual monocyte subpopulations on thrombus formation,clot inflammation,and degradation is an important unresolved issue. We investigate the role of inflammatory Ly6Chi monocytes in deep vein thrombosis and their potential therapeutic impact. METHODS Frequencies and compositions of blood monocytes were analyzed by flow cytometry in CCR2-/- (C-C chemokine receptor type 2) and wild-type mice of different ages and after treatment with the NR4A1 (nuclear receptor group 4 family A member 1,Nur77) agonist CnsB (cytosporone B). TF (tissue factor) sufficient and deficient Ly6Chi monocytes were adoptively transferred into aged CCR2-/- mice. Thrombus formation and size were followed by ultrasound over a 3-week period after surgical reduction of blood flow (stenosis) in the inferior vena cava. RESULTS Reduced numbers of peripheral monocytes in aged (>30 w) CCR2-/- mice are accompanied by reduced thrombus formation after inferior vena cava ligation. Reducing the number of inflammatory Ly6Chi monocytes in wild-type mice by CsnB treatment before ligation,similarly suspends clotting,while later treatment (d1 or d4) reduces thrombus growth and accelerates resolution. We describe how changes in inflammatory monocyte numbers affect the gradual differentiation of monocytes in thrombi and show that only tissue factor-competent Ly6Chi monocytes restore thrombosis in aged CCR2-/- mice. CONCLUSIONS We conclude that the number of inflammatory Ly6Chi monocytes controls deep vein thrombosis formation,growth,and resolution and can be therapeutically manipulated with a NR4A1 agonist at all disease stages. View Publication -
文献A. Xu et al. (jan 2022) Journal of immunology (Baltimore,Md. : 1950) 208 1 155--168
Prosurvival IL-7-Stimulated Weak Strength of mTORC1-S6K Controls T Cell Memory via Transcriptional FOXO1-TCF1-Id3 and Metabolic AMPK$\alpha$1-ULK1-ATG7 Pathways.
CD8+ memory T (TM) cells play a critical role in immune defense against infection. Two common $\gamma$-chain family cytokines,IL-2 and IL-7,although triggering the same mTORC1-S6K pathway,distinctly induce effector T (TE) cells and TM cells,respectively,but the underlying mechanism(s) remains elusive. In this study,we generated IL-7R-/and AMPK$\alpha$1-knockout (KO)/OTI mice. By using genetic and pharmaceutical tools,we demonstrate that IL-7 deficiency represses expression of FOXO1,TCF1,p-AMPK$\alpha$1 (T172),and p-ULK1 (S555) and abolishes T cell memory differentiation in IL-7R KO T cells after Listeria monocytogenesis rLmOVA infection. IL-2- and IL-7-stimulated strong and weak S6K (IL-2/S6Kstrong and IL-7/S6Kweak) signals control short-lived IL-7R-CD62L-KLRG1+ TE and long-term IL-7R+CD62L+KLRG1- TM cell formations,respectively. To assess underlying molecular pathway(s),we performed flow cytometry,Western blotting,confocal microscopy,and Seahorse assay analyses by using the IL-7/S6Kweak-stimulated TM (IL-7/TM) and the control IL-2/S6Kstrong-stimulated TE (IL-2/TE) cells. We determine that the IL-7/S6Kweak signal activates transcriptional FOXO1,TCF1,and Id3 and metabolic p-AMPK$\alpha$1,p-ULK1,and ATG7 molecules in IL-7/TM cells. IL-7/TM cells upregulate IL-7R and CD62L,promote mitochondria biogenesis and fatty acid oxidation metabolism,and show long-term cell survival and functional recall responses. Interestingly,AMPK$\alpha$1 deficiency abolishes the AMPK$\alpha$1 but maintains the FOXO1 pathway and induces a metabolic switch from fatty acid oxidation to glycolysis in AMPK$\alpha$1 KO IL-7/TM cells,leading to loss of cell survival and recall responses. Taken together,our data demonstrate that IL-7-stimulated weak strength of mTORC1-S6K signaling controls T cell memory via activation of transcriptional FOXO1-TCF1-Id3 and metabolic AMPK$\alpha$1-ULK1-ATG7 pathways. This (to our knowledge) novel finding provides a new mechanism for a distinct IL-2/IL-7 stimulation model in T cell memory and greatly impacts vaccine development. View Publication -
文献I. Gonz\'alez-Mariscal et al. (jan 2022) Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 145 112361
Abnormal cannabidiol ameliorates inflammation preserving pancreatic beta cells in mouse models of experimental type 1 diabetes and beta cell damage.
The atypical cannabinoid Abn-CBD improves the inflammatory status in preclinical models of several pathologies,including autoimmune diseases. However,its potential for modulating inflammation in autoimmune type 1 diabetes (T1D) is unknown. Herein we investigate whether Abn-CBD can modulate the inflammatory response during T1D onset using a mouse model of T1D (non-obese diabetic- (NOD)-mice) and of beta cell damage (streptozotocin (STZ)-injected mice). Six-week-old female NOD mice were treated with Abn-CBD (0.1-1 mg/kg) or vehicle during 12 weeks and then euthanized. Eight-to-ten-week-old male C57Bl6/J mice were pre-treated with Abn-CBD (1 mg/kg of body weight) or vehicle for 1 week,following STZ challenge,and euthanized 1 week later. Blood,pancreas,pancreatic lymph nodes (PLNs) and T cells were collected and processed for analysis. Glycemia was also monitored. In NOD mice,treatment with Abn-CBD significantly reduced the severity of insulitis and reduced the pro-inflammatory profile of CD4+ T cells compared to vehicle. Concomitantly,Abn-CBD significantly reduced islet cell apoptosis and improved glucose tolerance. In STZ-injected mice,Abn-CBD decreased circulating proinflammatory cytokines and ameliorated islet inflammation reducing intra-islet phospho-NF-$\kappa$B and TXNIP. Abn-CBD significantly reduced 2 folds intra-islet CD8+ T cells and reduced Th1/non-Th1 ratio in PLNs of STZ-injected mice. Islet cell apoptosis and intra-islet fibrosis were also significantly reduced in Abn-CBD pre-treated mice compared to vehicle. Altogether,Abn-CBD reduces circulating and intra-islet inflammation,preserving islets,thus delaying the progression of insulitis. Hence,Abn-CBD and related compounds emerge as new candidates to develop pharmacological strategies to treat the early stages of T1D. View Publication
过滤器
筛选结果
品牌
- ALDECOUNT 9 项目
- CellPore 8 项目
- CellSTACK 1 项目
- Corning 1 项目
- EasyPick 2 项目
- ELISA 2 项目
- ErythroClear 3 项目
- ES-Cult 95 项目
- Falcon 1 项目
- GloCell 2 项目
- GyneCult 2 项目
- HetaSep 2 项目
- iCell 14 项目
- Maestro 4 项目
- Matrigel 3 项目
- MegaCult 38 项目
- STEMgrid 1 项目
- STEMprep 2 项目
- ALDEFLUOR 231 项目
- AggreWell 68 项目
- ArciTect 35 项目
- BloodStor 2 项目
- BrainPhys 49 项目
- CellAdhere 2 项目
- ClonaCell 93 项目
- CloneR 9 项目
- CryoStor 78 项目
- EC-Cult 3 项目
- EasySep 741 项目
- EpiCult 13 项目
- HemaTox 7 项目
- HepatiCult 23 项目
- ImmunoCult 54 项目
- IntestiCult 128 项目
- Lymphoprep 24 项目
- MammoCult 55 项目
- MesenCult 105 项目
- MethoCult 518 项目
- MyeloCult 80 项目
- MyoCult 9 项目
- NaïveCult 1 项目
- NeuroCult 360 项目
- NeuroFluor 4 项目
- PBS-MINI 11 项目
- PancreaCult 19 项目
- PneumaCult 86 项目
- RSeT 10 项目
- ReLeSR 5 项目
- RoboSep 99 项目
- RosetteSep 281 项目
- STEMdiff 189 项目
- STEMscript 1 项目
- STEMvision 27 项目
- SepMate 47 项目
- SmartDish 11 项目
- StemSpan 327 项目
- TeSR 1676 项目
- ThawSTAR 10 项目
- mFreSR 35 项目
产品类型
- Antibodies 2 项目
- Cell Culture Media and Supplements 350 项目
- Cell Dyes and Detection Assay Kits 11 项目
- Cell Engineering and Molecular Tools 22 项目
- Cell Isolation Products 106 项目
- Cell Storage Media 2 项目
- Contract Services 6 项目
- Cultureware and General Supplies 2 项目
- Cytokines and Proteins 3 项目
- Density Gradient Media 1 项目
- Instruments and Software 11 项目
- Laboratory Equipment 2 项目
- Matrices and Substrates 1 项目
- Primary and Cultured Cells 33 项目
- Small Molecules 1 项目
- Standardization Tools 5 项目
- Tissue and Cell Culture Dissociation Reagents 12 项目
- Training and Education 29 项目
- ELISAs 1 项目
资源类别
细胞类型
- B 细胞 182 项目
- Cardiomyocytes 21 项目
- CD4+ 121 项目
- CD8+ 92 项目
- CHO细胞 3 项目
- Endoderm 18 项目
- Endothelial Cells 12 项目
- Epithelial Cells 29 项目
- HEK-293细胞(人胚肾293细胞) 1 项目
- Hematopoietic Cells 22 项目
- Hepatic Cells 13 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- Mesenchymal Cells 18 项目
- Mesoderm 18 项目
- Neural Cells 89 项目
- NK 细胞 121 项目
- Other Subsets 21 项目
- PSC-Derived 128 项目
- PSC衍生 27 项目
- Regulatory 34 项目
- T Cells 102 项目
- T 细胞 352 项目
- 上皮细胞 106 项目
- 中胚层 1 项目
- 乳腺细胞 74 项目
- 先天性淋巴细胞 23 项目
- 全血 6 项目
- 内皮细胞 8 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 前列腺细胞 8 项目
- 单个核细胞 73 项目
- 单核细胞 142 项目
- 多巴胺能神经元 3 项目
- 多能干细胞 1859 项目
- 小胶质细胞 3 项目
- 巨噬细胞 25 项目
- 巨核细胞 8 项目
- 心肌细胞 15 项目
- 成骨细胞 6 项目
- 星形胶质细胞 2 项目
- 杂交瘤细胞 83 项目
- 树突状细胞(DCs) 91 项目
- 气道细胞 73 项目
- 淋巴细胞 33 项目
- 癌细胞及细胞系 130 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 真皮细胞 2 项目
- 神经元 165 项目
- 神经干/祖细胞 420 项目
- 神经细胞 6 项目
- 粒细胞及其亚群 76 项目
- 红系细胞 9 项目
- 肌源干/祖细胞 9 项目
- 肝细胞 25 项目
- 肠道细胞 61 项目
- 肾细胞 3 项目
- 肾脏细胞 4 项目
- 肿瘤细胞 11 项目
- 胰腺细胞 12 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 87 项目
- 血小板 4 项目
- 血浆 16 项目
- 血管生成细胞 2 项目
- 调节性细胞 9 项目
- 软骨细胞 7 项目
- 造血干/祖细胞 875 项目
- 间充质基质细胞 13 项目
- 间充质干/祖细胞 156 项目
- 间充质细胞 1 项目
- 骨髓基质细胞 2 项目
- 骨髓瘤细胞 4 项目
- 髓系细胞 116 项目
- 鼠胚胎成纤维细胞 1 项目
- 白细胞 9 项目
- 其它细胞系 5 项目
- 红细胞 10 项目
研究方向
种属